Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 179(6): 1409-1423.e17, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31778655

ABSTRACT

The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor ß (TGF-ß) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.


Subject(s)
Adaptation, Physiological , Feathers/anatomy & histology , Feathers/physiology , Flight, Animal/physiology , Animals , Biological Evolution , Birds/anatomy & histology , Cell Adhesion Molecules/metabolism , Cytoskeleton/metabolism , Dermis/anatomy & histology , Stem Cells/cytology , Time Factors , Transcriptome/genetics , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL