Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003592

ABSTRACT

Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.


Subject(s)
Cerebellar Ataxia , Cerebellar Diseases , Neurodegenerative Diseases , Spastic Paraplegia, Hereditary , Child , Humans , Genetic Heterogeneity , Mutation , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Ataxia , Phenotype , Spastic Paraplegia, Hereditary/genetics , Paraplegia , Pedigree , Atrophy , Microtubule-Associated Proteins/genetics , Membrane Proteins/genetics
2.
Neuropathol Appl Neurobiol ; 48(5): e12817, 2022 08.
Article in English | MEDLINE | ID: mdl-35342985

ABSTRACT

AIMS: We aim to present data obtained from three patients belonging to three unrelated families with an infantile onset demyelinating neuropathy associated to somatic and neurodevelopmental delay and to describe the underlying genetic changes. METHODS: We performed whole-exome sequencing on genomic DNA from the patients and their parents and reviewed the clinical, muscle and nerve data, the serial neurophysiological studies, brain and muscle MRIs, as well as the respiratory chain complex activity in the muscle of the three index patients. Computer modelling was used to characterise the new missense variant detected. RESULTS: All three patients had a short stature, delayed motor milestone acquisition, intellectual disability and cerebellar abnormalities associated with a severe demyelinating neuropathy, with distinct morphological features. Despite the proliferation of giant mitochondria, the mitochondrial respiratory chain complex activity in skeletal muscle was normal, except in one patient in whom there was a mild decrease in complex I enzyme activity. All three patients carried the same two compound heterozygous variants of the TRMT5 (tRNA Methyltransferase 5) gene, one known pathogenic frameshift mutation [c.312_315del (p.Ile105Serfs*4)] and a second rare missense change [c.665 T > C (p.Ile222Thr)]. TRMT5 is a nuclear-encoded protein involved in the post-transcriptional maturation of mitochondrial tRNA. Computer modelling of the human TRMT5 protein structure suggests that the rare p.Ile222Thr mutation could affect the stability of tRNA binding. CONCLUSIONS: Our study expands the phenotype of mitochondrial disorders caused by TRTM5 mutations and defines a new form of recessive demyelinating peripheral neuropathy.


Subject(s)
Mitochondrial Diseases , Peripheral Nervous System Diseases , tRNA Methyltransferases , Humans , Mitochondrial Diseases/pathology , Mutation , Phenotype , RNA, Transfer , Syndrome , tRNA Methyltransferases/genetics
3.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233161

ABSTRACT

Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.


Subject(s)
Movement Disorders , Neurodegenerative Diseases , Ataxia/genetics , Brain , Humans , Iron , Kinesins , Mutation , Neurodegenerative Diseases/genetics , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics
4.
Hum Mol Genet ; 28(10): 1629-1644, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30624633

ABSTRACT

Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.


Subject(s)
Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Sensory Receptor Cells/metabolism , Transcription Factors/genetics , Animals , Axons/pathology , Charcot-Marie-Tooth Disease/pathology , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation/genetics , Humans , Mutation/genetics , Neural Stem Cells , Rats , Sensory Receptor Cells/pathology
5.
Eur J Neurol ; 28(4): 1334-1343, 2021 04.
Article in English | MEDLINE | ID: mdl-33369814

ABSTRACT

BACKGROUND AND PURPOSE: Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of disorders characterized by degeneration of the motor component of peripheral nerves. Currently, only 15% to 32.5% of patients with dHMN are characterized genetically. Additionally, the prevalence of these genetic disorders is not well known. Recently, biallelic mutations in the sorbitol dehydrogenase gene (SORD) have been identified as a cause of dHMN, with an estimated frequency in undiagnosed cases of up to 10%. METHODS: In the present study, we included 163 patients belonging to 108 different families who were diagnosed with a dHMN and who underwent a thorough genetic screening that included next-generation sequencing and subsequent Sanger sequencing of SORD. RESULTS: Most probands were sporadic cases (62.3%), and the most frequent age of onset of symptoms was 2 to 10 years (28.8%). A genetic diagnosis was achieved in 37/108 (34.2%) families and 78/163 (47.8%) of all patients. The most frequent cause of distal hereditary motor neuropathies were mutations in HSPB1 (10.4%), GARS1 (9.8%), BICD2 (8.0%), and DNAJB2 (6.7%) genes. In addition, 3.1% of patients were found to be carriers of biallelic mutations in SORD. Mutations in another seven genes were also identified, although they were much less frequent. Eight new pathogenic mutations were detected, and 17 patients without a definite genetic diagnosis carried variants of uncertain significance. The calculated minimum prevalence of dHMN was 2.3 per 100,000 individuals. CONCLUSIONS: This study confirms the genetic heterogeneity of dHMN and that biallelic SORD mutations are a cause of dHMN in different populations.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Charcot-Marie-Tooth Disease/genetics , Child , Child, Preschool , Genetic Association Studies , Genetic Testing , HSP40 Heat-Shock Proteins , Heterozygote , Humans , Molecular Chaperones , Mutation
6.
Eur J Neurol ; 28(9): 3001-3011, 2021 09.
Article in English | MEDLINE | ID: mdl-34189813

ABSTRACT

BACKGROUND AND PURPOSE: MORC2 mutations have been described as a rare cause of axonal Charcot-Marie-Tooth disease (CMT2Z). The aim of this work was to determine the frequency and distribution of these mutations throughout Spain, to provide a comprehensive phenotypical description and, if possible, to establish a genotype-phenotype correlation. METHODS: Retrospectively, data on patients diagnosed with CMT2Z in Spain were collected and clinical, electrophysiological and muscle imaging information were analysed. RESULTS: Fifteen patients with CMT2Z were identified throughout Spain, seven of them belonging to a single kindred, whilst the rest were sporadic. The most common mutation was p.R252W, and four new mutations were identified. Eleven patients were categorized as having a scapuloperoneal phenotype, with asymmetric muscle weakness, early proximal upper limb involvement and frequent spontaneous muscular activity with distal sensory impairment and pes cavus, whilst two presented with a more classic length dependent sensory motor phenotype. This distinction was corroborated by the distribution of muscle fatty infiltration in muscle imaging. Two other patients were classified as having a neurodevelopmental phenotype consisting in congenital or early onset, delay in motor milestones, and global developmental delay in one of them. Nerve conduction studies revealed an unequivocally axonal neuropathy with frequent spontaneous activity, and serum creatine kinase levels were increased in 50% of the patients. CONCLUSIONS: MORC2 mutations are a rare cause of CMT in Spain, but in-depth phenotyping reveals a recognizable phenotypic spectrum that will be clinically relevant for future identification of this disease.


Subject(s)
Charcot-Marie-Tooth Disease , Charcot-Marie-Tooth Disease/epidemiology , Charcot-Marie-Tooth Disease/genetics , Humans , Mutation , Phenotype , Retrospective Studies , Spain/epidemiology , Transcription Factors
7.
Int J Mol Sci ; 22(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801522

ABSTRACT

(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by ß-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.


Subject(s)
Cerebellar Ataxia/pathology , Mutation , Neurodegenerative Diseases/pathology , Spectrin/genetics , Age of Onset , Amino Acid Sequence , Cerebellar Ataxia/complications , Cerebellar Ataxia/congenital , Cerebellar Ataxia/genetics , Child , Cohort Studies , Genetic Association Studies , Humans , Male , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/genetics , Neuroimaging , Phenotype , Protein Conformation , Sequence Homology , Spectrin/chemistry , Spectrin/metabolism , Syndrome
8.
Clin Genet ; 97(5): 758-763, 2020 05.
Article in English | MEDLINE | ID: mdl-32043565

ABSTRACT

Wilson's disease (WD) is an autosomal recessive disorder caused by ATP7B mutations. Subjects with only one mutation may show clinical signs and individuals with biallelic changes may remain asymptomatic. We aimed to achieve a conclusive genetic diagnosis for 34 patients clinically diagnosed of WD. Genetic analysis comprised from analysis of exons to WES (whole exome sequencing), including promoter, introns, UTRs (untranslated regions), besides of study of large deletions/duplications by MLPA (multiplex ligation-dependent probe amplification). Biallelic ATP7B mutations were identified in 30 patients, so that four patients were analyzed using WES. Two affected siblings resulted to be compound heterozygous for mutations in CCDC115, which is involved in a form of congenital disorder of glycosylation. In sum, the majority of patients with a WD phenotype carry ATP7B mutations. However, if genetic diagnosis is not achieved, additional genes should be considered because other disorders may mimic WD.


Subject(s)
Copper-Transporting ATPases/genetics , Genetic Predisposition to Disease , Hepatolenticular Degeneration/genetics , Nerve Tissue Proteins/genetics , Adult , Exons/genetics , Female , Genetic Testing , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/pathology , Humans , Male , Mutation/genetics , Phenotype , Spain/epidemiology , Exome Sequencing
9.
J Med Genet ; 55(12): 814-823, 2018 12.
Article in English | MEDLINE | ID: mdl-30415211

ABSTRACT

BACKGROUND: Mutations in the metalloendopeptidase (MME) gene were initially identified as a cause of autosomal recessive Charcot-Marie-Tooth disease type 2 (CMT2). Subsequently, variants in MME were linked to other late-onset autosomal dominant polyneuropathies. Thus, our goal was to define the phenotype and mode of inheritance of patients carrying changes in MME. METHODS: We screened 197 index cases with a hereditary neuropathy of the CMT type or distal hereditary motor neuropathy (dHMN) and 10 probands with familial amyotrophic lateral sclerosis (fALS) using a custom panel of 119 genes. In addition to the index case subjects, we also studied other clinically and/or genetically affected and unaffected family members. RESULTS: We found 17 variants in MME in a total of 20 index cases, with biallelic MME mutations detected in 13 cases from nine families (three in homozygosis and six in compound heterozygosis) and heterozygous variants found in 11 families. All patients with biallelic variants had a similar phenotype, consistent with late-onset axonal neuropathy. Conversely, the phenotype of patients carrying heterozygous mutations was highly variable [CMT type 1 (CMT1), CMT2, dHMN and fALS] and mutations did not segregate with the disease. CONCLUSION: MME mutations that segregate in an autosomal recessive pattern are associated with a late-onset CMT2 phenotype, yet we could not demonstrate that MME variants in heterozygosis cause neuropathy. Our data highlight the importance of establishing an accurate genetic diagnosis in patients carrying MME mutations, especially with a view to genetic counselling.


Subject(s)
Genetic Association Studies , Inheritance Patterns , Metalloendopeptidases/genetics , Mutation , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/genetics , Phenotype , Adult , Aged , Alleles , Amino Acid Substitution , Electromyography , Electrophysiological Phenomena , Female , Gene Frequency , Genes, Recessive , Genotype , Humans , Magnetic Resonance Imaging , Male , Metalloendopeptidases/metabolism , Middle Aged , Pedigree
10.
Hum Mutat ; 39(3): 415-432, 2018 03.
Article in English | MEDLINE | ID: mdl-29235198

ABSTRACT

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Subject(s)
Axons/pathology , Histidine-tRNA Ligase/metabolism , Peripheral Nervous System Diseases/enzymology , Peripheral Nervous System Diseases/pathology , Amino Acid Sequence , Aminoacylation , Biocatalysis , Catalytic Domain , Conserved Sequence , Female , Genetic Complementation Test , Histidine-tRNA Ligase/chemistry , Histidine-tRNA Ligase/genetics , Histidine-tRNA Ligase/isolation & purification , Humans , Kinetics , Male , Mutation/genetics , Pedigree , Peripheral Nervous System Diseases/genetics , Protein Multimerization , Substrate Specificity
11.
Neurogenetics ; 18(4): 245-250, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28975462

ABSTRACT

In two siblings, who suffer from an early childhood-onset axonal polyneuropathy with exclusive involvement of motor fibers, the c.629T>C (p.F210S) mutation was identified in the X-linked AIFM1 gene, which encodes for the apoptosis-inducing factor (AIF). The mutation was predicted as deleterious, according to in silico analysis. A decreased expression of the AIF protein, altered cellular morphology, and a fragmented mitochondrial network were observed in the proband's fibroblasts. This new form of motor neuropathy expands the phenotypic spectrum of AIFM1 mutations and therefore, the AIFM1 gene should be considered in the diagnosis of hereditary motor neuropathies.


Subject(s)
Apoptosis Inducing Factor/genetics , Muscular Atrophy, Spinal/genetics , Mutation/genetics , Female , Genes, X-Linked/genetics , Humans , Infant , Male , Muscular Atrophy, Spinal/diagnosis , Pedigree , Phenotype , Proteins/genetics
12.
Hum Mol Genet ; 24(1): 213-29, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25168384

ABSTRACT

Mutations in the GDAP1 gene cause different forms of Charcot-Marie-Tooth (CMT) disease, and the primary clinical expression of this disease is markedly variable in the dominant inheritance form (CMT type 2K; CMT2K), in which carriers of the GDAP1 p.R120W mutation can display a wide range of clinical severity. We investigated the JPH1 gene as a genetic modifier of clinical expression variability because junctophilin-1 (JPH1) is a good positional and functional candidate. We demonstrated that the JPH1-GDAP1 cluster forms a paralogon and is conserved in vertebrates. Moreover, both proteins play a role in Ca(2+) homeostasis, and we demonstrated that JPH1 is able to restore the store-operated Ca(2+) entry (SOCE) activity in GDAP1-silenced cells. After the mutational screening of JPH1 in a series of 24 CMT2K subjects who harbour the GDAP1 p.R120W mutation, we characterized the JPH1 p.R213P mutation in one patient with a more severe clinical picture. JPH1(p.R213P) cannot rescue the SOCE response in GDAP1-silenced cells. We observed that JPH1 colocalizes with STIM1, which is the activator of SOCE, in endoplasmic reticulum-plasma membrane puncta structures during Ca(2+) release in a GDAP1-dependent manner. However, when GDAP1(p.R120W) is expressed, JPH1 seems to be retained in mitochondria. We also established that the combination of GDAP1(p.R120W) and JPH1(p.R213P) dramatically reduces SOCE activity, mimicking the effect observed in GDAP1 knock-down cells. In summary, we conclude that JPH1 and GDAP1 share a common pathway and depend on each other; therefore, JPH1 can contribute to the phenotypical consequences of GDAP1 mutations.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Animals , Calcium/metabolism , Cell Line , Charcot-Marie-Tooth Disease/metabolism , Evolution, Molecular , Genes, Modifier , Genetic Predisposition to Disease , Humans , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mutation , Neoplasm Proteins/metabolism , Phylogeny , Stromal Interaction Molecule 1
13.
Mov Disord ; 32(11): 1620-1630, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28845923

ABSTRACT

BACKGROUND: Pantothenate kinase-associated neurodegeneration is a progressive neurological disorder occurring in both childhood and adulthood. The objective of this study was to design and pilot-test a disease-specific clinical rating scale for the assessment of patients with pantothenate kinase-associated neurodegeneration. METHODS: In this international cross-sectional study, patients were examined at the referral centers following a standardized protocol. The motor examination was filmed, allowing 3 independent specialists in movement disorders to analyze 28 patients for interrater reliability assessment. The scale included 34 items (maximal score, 135) encompassing 6 subscales for cognition, behavior, disability, parkinsonism, dystonia, and other neurological signs. RESULTS: Forty-seven genetically confirmed patients (30 ± 17 years; range, 6-77 years) were examined with the scale (mean score, 62 ± 21; range, 20-106). Dystonia with prominent cranial involvement and atypical parkinsonian features were present in all patients. Other common signs were cognitive impairment, psychiatric features, and slow and hypometric saccades. Dystonia, parkinsonism, and other neurological features had a moderate to strong correlation with disability. The scale showed good internal consistency for the total scale (Cronbach's α = 0.87). On interrater analysis, weighted kappa values (0.30-0.93) showed substantial or excellent agreement in 85% of the items. The scale also discriminated a subgroup of homozygous c.1583C>T patients with lower scores, supporting construct validity for the scale. CONCLUSIONS: The proposed scale seems to be a reliable and valid instrument for the assessment of pediatric and adult patients with pantothenate kinase-associated neurodegeneration. Additional validation studies with a larger sample size will be required to confirm the present results and to complete the scale validation testing. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Disabled Persons , Dystonia/diagnosis , Pantothenate Kinase-Associated Neurodegeneration/diagnosis , Parkinsonian Disorders/diagnosis , Severity of Illness Index , Adolescent , Adult , Aged , Child , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Dystonia/etiology , Humans , Mental Disorders/diagnosis , Mental Disorders/etiology , Middle Aged , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/etiology , Pantothenate Kinase-Associated Neurodegeneration/complications , Pantothenate Kinase-Associated Neurodegeneration/genetics , Parkinsonian Disorders/etiology , Pilot Projects , Reproducibility of Results , Young Adult
14.
Brain ; 139(Pt 1): 62-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26497905

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of Charcot-Marie-Tooth disease.


Subject(s)
Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Mutation , Transcription Factors/genetics , Adult , Aged , Animals , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/pathology , Female , Gene Expression/genetics , Humans , Infant , Male , Mice , Middle Aged , Pedigree , Phenotype , Sciatic Nerve/metabolism , Sural Nerve/ultrastructure , Transcription Factors/biosynthesis , Young Adult
15.
J Neurol ; 271(2): 986-994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37907725

ABSTRACT

OBJECTIVE: To describe a new phenotype associated with a novel variant in BAG3: autosomal dominant adult-onset distal hereditary motor neuronopathy. METHODS: This study enrolled eight affected individuals from a single family and included a comprehensive evaluation of the clinical phenotype, neurophysiologic testing, muscle MRI, muscle biopsy and western blot of BAG3 protein in skeletal muscle. Genetic workup included whole exome sequencing and segregation analysis of the detected variant in BAG3. RESULTS: Seven patients developed slowly progressive and symmetric distal weakness and atrophy of lower limb muscles, along with absent Achilles reflexes. The mean age of onset was 46 years. The neurophysiological examination was consistent with the diagnosis of distal motor neuronopathy. One 57-year-old female patient was minimally symptomatic. The pattern of inheritance was autosomal dominant, with one caveat: one female patient who was an obligate carrier of the variant died at the age of 73 years without exhibiting any muscle weakness. The muscle biopsies revealed neurogenic changes. A novel heterozygous truncating variant c.1513_1514insGGAC (p.Val505GlyfsTer6) in the gene BAG3 was identified in all affected family members. CONCLUSIONS: We report an autosomal dominant adult-onset distal hereditary motor neuronopathy with incomplete penetrance in women as a new phenotype related to a truncating variant in the BAG3 gene. Our findings expand the phenotypic spectrum of BAG3-related disorders, which previously included dilated cardiomyopathy, myofibrillar myopathy and adult-onset Charcot-Marie-Tooth type 2 neuropathy. Variants in BAG3 should be considered in the differential diagnosis of distal hereditary motor neuronopathies.


Subject(s)
Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Adult , Humans , Female , Middle Aged , Aged , Pedigree , Charcot-Marie-Tooth Disease/genetics , Phenotype , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/pathology , Mutation/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics
16.
Glia ; 61(7): 1041-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23553667

ABSTRACT

Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.


Subject(s)
Carrier Proteins/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-2/metabolism , Animals , Animals, Newborn , Carrier Proteins/genetics , Cells, Cultured , Gene Expression Regulation/genetics , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Neuregulin-1/genetics , Receptor, ErbB-2/genetics , Schwann Cells/metabolism , Sciatic Nerve/cytology , Sciatic Nerve/metabolism , Subcellular Fractions/metabolism
17.
Adv Exp Med Biol ; 724: 61-75, 2012.
Article in English | MEDLINE | ID: mdl-22411234

ABSTRACT

Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.


Subject(s)
Charcot-Marie-Tooth Disease/epidemiology , Charcot-Marie-Tooth Disease/genetics , Demyelinating Diseases/genetics , Genes, Recessive/genetics , Nerve Tissue Proteins/genetics , Charcot-Marie-Tooth Disease/complications , Demyelinating Diseases/complications , Humans , Phenotype
18.
Hum Mol Genet ; 18(23): 4603-14, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19744956

ABSTRACT

Mutations in SH3TC2 (KIAA1985) cause Charcot-Marie-Tooth disease (CMT) type 4C, a demyelinating inherited neuropathy characterized by early-onset and scoliosis. Here we demonstrate that the SH3TC2 protein is present in several components of the endocytic pathway including early endosomes, late endosomes and clathrin-coated vesicles close to the trans-Golgi network and in the plasma membrane. Myristoylation of SH3TC2 in glycine 2 is necessary but not sufficient for the proper location of the protein in the cell membranes. In addition to myristoylation, correct anchoring also needs the presence of SH3 and TPR domains. Mutations that cause a stop codon and produce premature truncations that remove most of the TPR domains are expressed as the wild-type protein. In contrast, missense mutations in or around the region of the first-TPR domain are absent from early endosomes, reduced in plasma membrane and late endosomes and are variably present in clathrin-coated vesicles. Our findings suggest that the endocytic and membrane trafficking pathway is involved in the pathogenesis of CMT4C disease. We postulate that missense mutations of SH3TC2 could impair communication between the Schwann cell and the axon causing an abnormal myelin formation.


Subject(s)
Cell Membrane/metabolism , Charcot-Marie-Tooth Disease/genetics , Endocytosis , Mutation, Missense , Proteins/metabolism , Cell Membrane/genetics , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/physiopathology , Clathrin-Coated Vesicles/genetics , Clathrin-Coated Vesicles/metabolism , Endosomes/genetics , Endosomes/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins , Male , Protein Structure, Tertiary , Protein Transport , Proteins/chemistry , Proteins/genetics , White People/genetics
19.
J Peripher Nerv Syst ; 16(4): 347-52, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22176150

ABSTRACT

Congenital hypomyelinating neuropathy (CHN) is a severe inherited neuropathy with neonatal or early infancy onset, reduced nerve conduction velocity, and pathological evidence of hypomyelination. We describe a case of CHN that presented with neonatal hypotonia and a progressive downhill clinical course, developing cranial nerve dysfunction, and respiratory failure. The nerve conduction velocities were severely slowed and sural nerve biopsy revealed non-myelinated and poorly myelinated axons, with no typical onion bulbs. The mutational screening showed that our proband harbored a novel missense mutation, p.S121F, in the MPZ gene. In silico analyses and molecular modeling predicted that the replacement of a serine by a phenylalanine is a non-tolerated change and may affect the folding and the stability of the protein. Subcellular location studies were performed and revealed that the mutant protein loses its correct location on the cell membrane surface and is mainly expressed in the cytosol, reducing its adhesive properties. This case illustrates the clinical heterogeneity that exists in neuropathies associated with MPZ mutations and highlights that in patients with mild hypotonia in the first months that develop a very severe demyelinating neuropathy, the MPZ gene must be taken into account.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Mutation, Missense , Myelin P0 Protein/genetics , Child, Preschool , DNA Mutational Analysis , Humans , Male
20.
Open Vet J ; 11(4): 680-685, 2021.
Article in English | MEDLINE | ID: mdl-35070864

ABSTRACT

BACKGROUND: Fibroadenomatous changes (FAC) of the mammary gland in cats represents a benign, progesterone-associated fibroglandular proliferation of one or more mammary glands that may occur in intact female cats at the time of puberty, during pregnancy or pseudopregnancy, or in female and male cats of any age under progestin treatment. Nowadays, the elective treatment of FAC is based on the progesterone antagonist aglepristone. This study aimed to report the treatment of FAC with a combination of drugs designed to preserve mammary gland integrity, even in pregnant cats. CASE DESCRIPTION: Eight sexually intact female cats with FAC showed mammary glands that were symmetrically enlarged and inflamed in all cases, and the skin was ulcerated in six cats. Four cats were on days 25-32 of pregnancy at presentation. Non-pregnant cats were treated with aglepristone and with a dietary supplement containing maltodextrin and bromelain. The mammary glands were massaged daily with an Aloe vera emollient gel. If the gland was inflamed or ulcerated, broad-spectrum antimicrobial, and anti-inflammatory treatments were given, and the ulcers were treated topically with a hypericum and neem-based cream. Two of the four pregnant cats were treated with the same therapeutic schedule plus cloprostenol to facilitate uterine emptying. Two pregnant cats underwent the same protocol except for aglepristone, which was not administered to safeguard the litter and see if the adjuvant therapy worked independently. At term, they delivered four and three kittens, respectively, that were normally nursed and weaned after 40 days. In all the studied cases, the mammary gland reduced in size 2-3 weeks after the start of the treatment and completely remitted after 4-5 weeks. CONCLUSION: This case series encourages adjuvant therapy in the course of FAC to preserve mammary gland integrity and functionality. Exploiting the natural decline of progesterone at the end of pregnancy (or pseudopregnancy), the therapy may also be used without aglepristone, when its use has other limitations.


Subject(s)
Conservative Treatment , Progesterone , Animals , Cats , Conservative Treatment/veterinary , Female , Male , Pregnancy , Uterus
SELECTION OF CITATIONS
SEARCH DETAIL