Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 199(9): 3326-3335, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28978694

ABSTRACT

We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99), that is expressed in bone marrow and fetal liver and whose expression is also induced in peripheral B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (∼27-kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer's patches and lower numbers of IgA-secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. Although naive B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL-4 and TGF-ß1, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called IL-40, that plays an important role in humoral immune responses and may also play a role in B cell development. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observations suggest that it may play a role in the pathogenesis of certain human diseases.


Subject(s)
B-Lymphocytes/immunology , Gene Expression Regulation/immunology , Interleukins/immunology , Peyer's Patches/immunology , Animals , Humans , Immunoglobulin A/immunology , Interleukins/genetics , Jurkat Cells , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Mice , Mice, Knockout
2.
Clin Immunol ; 149(3): 388-99, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24211713

ABSTRACT

We have identified Tspan33 as a gene encoding a transmembrane protein exhibiting a restricted expression pattern including expression in activated B cells. TSPAN33 is a member of the tetraspanin family. TSPAN33 is not expressed in resting B cells, but is strongly induced in primary human B cells following activation. Human 2E2 cells, a Burkitt's lymphoma-derived B cell model of activation and differentiation, also upregulate TSPAN33 upon activation. TSPAN33 is expressed in several lymphomas including Hodgkin's and Diffuse large B cell lymphoma. TSPAN33 is also expressed in some autoimmune diseases where B cells participate in the pathology, including rheumatoid arthritis patients, systemic lupus erythematosus (SLE), and in spleen B cells from MRL/Fas(lpr/lpr) mice (a mouse model of SLE). We conclude that TSPAN33 may be used as a diagnostic biomarker or as a target for therapeutic antibodies for treatment of certain B cell lymphomas or autoimmune diseases.


Subject(s)
B-Lymphocytes/drug effects , Lupus Erythematosus, Systemic/immunology , Tetraspanins/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Biomarkers/metabolism , Case-Control Studies , Cell Line , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Lipopolysaccharides/pharmacology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation , Male , Mice , Mice, Transgenic , Organ Specificity , Primary Cell Culture , Signal Transduction , Tetradecanoylphorbol Acetate/pharmacology , Tetraspanins/genetics
3.
Autoimmunity ; 47(1): 1-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24245950

ABSTRACT

In the 1950s, the discovery of autoantibodies produced by B cells seemed to provide a compelling mechanism underlying autoimmune diseases. The discovery of T regulatory cells and other T helper cell subsets shifted the field back towards a T cell central view. The success of rituxan, a chimeric mAb targeting CD20 on B cells, in the treatment of rheumatoid arthritis forced a review of the role of B cells in autoimmunity. Rituxan was first developed to treat lymphomas, and it also proved effective in treating rheumatoid arthritis, a disease not previously associated with B cells. One of the side effects of rituxan is a pronounced depletion of peripheral blood B cells, an effect that seemed to correlate with effectiveness in preclinical and clinical models of autoimmune diseases. B cell depletion was also shown to affect T cell populations, suggesting an antibody-independent mechanism through which B cells influenced rheumatic disease. Most recently, the identification of cytokine producing B cells (B regulatory and B effector cells) that modulate tolerance has added to our understanding of human health and disease and the mechanisms that break tolerance, as the B cell cytokine network produced by B cell subsets were shown to influence T cell numbers, as well as the polarization of T cell subsets (Tregs/Th1/Th2). Therefore, B cells have once again taken the center stage in tolerance and autoimmunity. Here, we review the role of B cells in autoimmunity, mainly through their ability to produce cytokines.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/biosynthesis , Immune Tolerance , Animals , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Humans , Immunomodulation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL