Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Traffic ; 23(5): 238-269, 2022 05.
Article in English | MEDLINE | ID: mdl-35343629

ABSTRACT

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Subject(s)
Lysosomes , Metabolic Networks and Pathways , Lysosomes/metabolism , Signal Transduction
2.
J Cell Sci ; 134(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34042162

ABSTRACT

To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered lysosome-associated membrane protein (LAMP)-carrier vesicles around multivesicular bodies, as well as the appearance of 'hourglass' profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of charged multi-vesicular body protein 6 (CHMP6), and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.


Subject(s)
Membrane Fusion , SNARE Proteins , Endosomes , HeLa Cells , Humans , Lysosomes , R-SNARE Proteins/genetics , SNARE Proteins/genetics
3.
Cell ; 134(5): 817-27, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18775314

ABSTRACT

SNAREs provide the specificity and energy for the fusion of vesicles with their target membrane, but how they are sorted into the appropriate vesicles on post-Golgi trafficking pathways is largely unknown. We demonstrate that the clathrin-mediated endocytosis of the SNARE VAMP7 is directly mediated by Hrb, a clathrin adaptor and ArfGAP. Hrb wraps 20 residues of its unstructured C-terminal tail around the folded VAMP7 longin domain, demonstrating that unstructured regions of clathrin adaptors can select cargo. Disrupting this interaction by mutation of the VAMP7 longin domain or depletion of Hrb causes VAMP7 to accumulate on the cell's surface. However, the SNARE helix of VAMP7 binds back onto its longin domain, outcompeting Hrb for binding to the same groove and suggesting that Hrb-mediated endocytosis of VAMP7 occurs only when VAMP7 is incorporated into a cis-SNARE complex. These results elucidate the mechanism of retrieval of a postfusion SNARE complex in clathrin-coated vesicles.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Clathrin-Coated Vesicles/metabolism , R-SNARE Proteins/chemistry , R-SNARE Proteins/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Endocytosis , Humans , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Protein Transport , Two-Hybrid System Techniques
4.
Hum Mutat ; 43(12): 2265-2278, 2022 12.
Article in English | MEDLINE | ID: mdl-36153662

ABSTRACT

A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.


Subject(s)
Mutation, Missense , Vesicular Transport Proteins , Humans , Male , Endosomes/metabolism , Lysosomes/metabolism , Mutation , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
5.
Hum Mol Genet ; 28(15): 2514-2530, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31070736

ABSTRACT

A rare lysosomal disease resembling a mucopolysaccharidosis with unusual systemic features, including renal disease and platelet dysfunction, caused by the defect in a conserved region of the VPS33A gene on human chromosome 12q24.31, occurs in Yakuts-a nomadic Turkic ethnic group of Southern Siberia. VPS33A is a core component of the class C core vacuole/endosome tethering (CORVET) and the homotypic fusion and protein sorting (HOPS) complexes, which have essential functions in the endocytic pathway. Here we show that cultured fibroblasts from patients with this disorder have morphological changes: vacuolation with disordered endosomal/lysosomal compartments and-common to sphingolipid diseases-abnormal endocytic trafficking of lactosylceramide. Urine glycosaminoglycan studies revealed a pathological excess of sialylated conjugates as well as dermatan and heparan sulphate. Lipidomic screening showed elevated ß-D-galactosylsphingosine with unimpaired activity of cognate lysosomal hydrolases. The 3D crystal structure of human VPS33A predicts that replacement of arginine 498 by tryptophan will de-stabilize VPS33A folding. We observed that the missense mutation reduced the abundance of full-length VPS33A and other components of the HOPS and CORVET complexes. Treatment of HeLa cells stably expressing the mutant VPS33A with a proteasome inhibitor rescued the mutant protein from degradation. We propose that the disease is due to diminished intracellular abundance of intact VPS33A. Exposure of patient-derived fibroblasts to the clinically approved proteasome inhibitor, bortezomib, or inhibition of glucosylceramide synthesis with eliglustat, partially corrected the impaired lactosylceramide trafficking defect and immediately suggest therapeutic avenues to explore in this fatal orphan disease.


Subject(s)
Antigens, CD/metabolism , Carbohydrate Metabolism, Inborn Errors/genetics , Endocytosis , Lactosylceramides/metabolism , Lysosomes/metabolism , Mutation, Missense , Vesicular Transport Proteins/genetics , Bortezomib/therapeutic use , Carbohydrate Metabolism, Inborn Errors/metabolism , Carbohydrate Metabolism, Inborn Errors/physiopathology , Cells, Cultured , Female , Fibroblasts/metabolism , Fibroblasts/pathology , HeLa Cells , Humans , Infant , Lysosomes/physiology , Male , Mucopolysaccharidoses , Phenotype , Proteasome Inhibitors/therapeutic use , Protein Conformation , Pyrrolidines/therapeutic use , Siberia , Vesicular Transport Proteins/metabolism , Exome Sequencing
6.
Prog Mol Subcell Biol ; 57: 151-180, 2018.
Article in English | MEDLINE | ID: mdl-30097775

ABSTRACT

In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.


Subject(s)
Endocytosis/genetics , Endoplasmic Reticulum/genetics , Endosomes/genetics , Lysosomes/genetics , Animals , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Signal Transduction/genetics
7.
Traffic ; 16(7): 727-42, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25783203

ABSTRACT

The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Autophagy , HeLa Cells , Humans , Molecular Sequence Data , Protein Binding , Protein Transport , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
8.
Biochem J ; 471(1): 79-88, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26221024

ABSTRACT

The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild-type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6.


Subject(s)
Down-Regulation , Endosomal Sorting Complexes Required for Transport/metabolism , Herpesvirus 8, Human/metabolism , Histocompatibility Antigens Class I/biosynthesis , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Ubiquitination , Viral Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HeLa Cells , Herpesvirus 8, Human/genetics , Histocompatibility Antigens Class I/genetics , Humans , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Viral Proteins/genetics
9.
Proc Natl Acad Sci U S A ; 110(33): 13345-50, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23901104

ABSTRACT

The multisubunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for late endosome-lysosome and autophagosome-lysosome fusion in mammals. We have determined the crystal structure of the human HOPS subunit Vps33A, confirming its identity as a Sec1/Munc18 family member. We show that HOPS subunit Vps16 recruits Vps33A to the human HOPS complex and that residues 642-736 are necessary and sufficient for this interaction, and we present the crystal structure of Vps33A in complex with Vps16(642-736). Mutations at the binding interface disrupt the Vps33A-Vps16 interaction both in vitro and in cells, preventing recruitment of Vps33A to the HOPS complex. The Vps33A-Vps16 complex provides a structural framework for studying the association between Sec1/Munc18 proteins and tethering complexes.


Subject(s)
Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , Vesicular Transport Proteins/chemistry , Binding Sites/genetics , Escherichia coli , Humans , Multiprotein Complexes/metabolism , Mutation/genetics , Species Specificity , Vesicular Transport Proteins/metabolism
10.
Curr Opin Cell Biol ; 19(4): 459-65, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17689064

ABSTRACT

The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood on comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognize ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules.


Subject(s)
Cell Membrane/physiology , Lysosomes/metabolism , Membrane Proteins/metabolism , Ubiquitin/physiology , Animals , Endosomes/physiology , Humans , Protein Transport/physiology
11.
Mol Biol Cell ; 35(5): ar63, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38446621

ABSTRACT

Regulation of the luminal pH of late endocytic compartments in continuously fed mammalian cells is poorly understood. Using normal rat kidney fibroblasts, we investigated the reversible assembly/disassembly of the proton pumping V-ATPase when endolysosomes are formed by kissing and fusion of late endosomes with lysosomes and during the subsequent reformation of lysosomes. We took advantage of previous work showing that sucrosomes formed by the uptake of sucrose are swollen endolysosomes from which lysosomes are reformed after uptake of invertase. Using confocal microscopy and subcellular fractionation of NRK cells stably expressing fluorescently tagged proteins, we found net recruitment of the V1 subcomplex during sucrosome formation and loss during lysosome reformation, with a similar time course to RAB7a loss. Addition of invertase did not alter mTORC1 signalling, suggesting that the regulation of reversible V-ATPase assembly/disassembly in continuously fed cells differs from that in cells subject to amino acid depletion/refeeding. Using live cell microscopy, we demonstrated recruitment of a fluorescently tagged V1 subunit during endolysosome formation and a dynamic equilibrium and rapid exchange between the cytosolic and membrane bound pools of this subunit. We conclude that reversible V-ATPase assembly/disassembly plays a key role in regulating endolysosomal/lysosomal pH in continuously fed cells.


Subject(s)
Vacuolar Proton-Translocating ATPases , Rats , Animals , Vacuolar Proton-Translocating ATPases/metabolism , beta-Fructofuranosidase/metabolism , Endosomes/metabolism , Signal Transduction , Lysosomes/metabolism , Mammals/metabolism
12.
Infect Immun ; 81(9): 3264-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23798529

ABSTRACT

Two-day-old (P2), but not 9-day-old (P9), rat pups are susceptible to systemic infection following gastrointestinal colonization by Escherichia coli K1. Age dependency reflects the capacity of colonizing K1 to translocate from gastrointestinal (GI) tract to blood. A complex GI microbiota developed by P2, showed little variation over P2 to P9, and did not prevent stable K1 colonization. Substantial developmental expression was observed over P2 to P9, including upregulation of genes encoding components of the small intestinal (α-defensins Defa24 and Defa-rs1) and colonic (trefoil factor Tff2) mucus barrier. K1 colonization modulated expression of these peptides: developmental expression of Tff2 was dysregulated in P2 tissues and was accompanied by a decrease in mucin Muc2. Conversely, α-defensin genes were upregulated in P9 tissues. We propose that incomplete development of the mucus barrier during early neonatal life and the capacity of colonizing K1 to interfere with mucus barrier maturation provide opportunities for neuropathogen translocation into the bloodstream.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Intestine, Small/immunology , Intestine, Small/microbiology , Animals , Animals, Newborn , Colon/immunology , Colon/metabolism , Colon/microbiology , Gastrointestinal Tract/metabolism , Immunity, Innate/immunology , Intestine, Small/metabolism , Microbiota/genetics , Microbiota/immunology , Mucins/genetics , Mucins/immunology , Mucins/metabolism , Mucus/immunology , Mucus/metabolism , Mucus/microbiology , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Rats , Trefoil Factor-2 , Up-Regulation/genetics , Up-Regulation/immunology , alpha-Defensins/genetics , alpha-Defensins/immunology , alpha-Defensins/metabolism
13.
Hum Mol Genet ; 19(6): 1009-18, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20028792

ABSTRACT

Mutations in the functionally uncharacterized protein SH3TC2 are associated with the severe hereditary peripheral neuropathy, Charcot-Marie-Tooth disease type 4C (CMT4C). Similarly, to other proteins mutated in CMT, a role for SH3TC2 in endocytic membrane traffic has been previously proposed. However, recent descriptions of the intracellular localization of SH3TC2 are conflicting. Furthermore, no clear functional pathogenic mechanisms have so far been proposed to explain why both nonsense and missense mutations in SH3TC2 lead to similar clinical phenotypes. Here, we describe our intracellular localization studies, supported by biochemical and functional data, using wild-type and mutant SH3TC2. We show that wild-type SH3TC2 targets to the intracellular recycling endosome by associating with the small GTPase, Rab11, which is known to regulate the recycling of internalized membrane and receptors back to the plasma membrane. Furthermore, we demonstrate that SH3TC2 interacts preferentially with the GTP-bound form of Rab11, identifying SH3TC2 as a novel Rab11 effector. Of clinical pathological relevance, all SH3TC2 constructs harbouring disease-causing mutations are shown to be unable to associate with Rab11 with consequent loss of recycling endosome localization. Moreover, we show that wild-type SH3TC2, but not mutant SH3TC2, influences transferrin receptor dynamics, consistent with a functional role on the endocytic recycling pathway. Our data therefore implicate mistargeting of SH3TC2 away from the recycling endosome as the fundamental molecular defect that leads to CMT4C.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Endocytosis , Endosomes/metabolism , Proteins/metabolism , Animals , Blotting, Western , Cell Extracts , Cell Membrane/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Intracellular Space/metabolism , Microscopy, Confocal , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Tertiary , Protein Transport , Proteins/chemistry , Rats , Receptors, Transferrin/metabolism
14.
Traffic ; 10(1): 42-56, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19000169

ABSTRACT

Mutations in the gene encoding the microtubule (MT)-severing protein spastin are the most common cause of hereditary spastic paraplegia, a genetic condition in which axons of the corticospinal tracts degenerate. We show that not only does endogenous spastin colocalize with MTs, but that it is also located on the early secretory pathway, can be recruited to endosomes and is present in the cytokinetic midbody. Spastin has two main isoforms, a 68 kD full-length isoform and a 60 kD short form. These two isoforms preferentially localize to different membrane traffic pathways with 68 kD spastin being principally located at the early secretory pathway, where it regulates endoplasmic reticulum-to-Golgi traffic. Sixty kiloDalton spastin is the major form recruited to endosomes and is also present in the midbody, where its localization requires the endosomal sorting complex required for transport-III-interacting MIT domain. Loss of midbody MTs accompanies the abscission stage of cytokinesis. In cells lacking spastin, a MT disruption event that normally accompanies abscission does not occur and abscission fails. We suggest that this event represents spastin-mediated MT severing. Our results support a model in which membrane traffic and MT regulation are coupled through spastin. This model is relevant in the axon, where there also is co-ordinated MT regulation and membrane traffic.


Subject(s)
Adenosine Triphosphatases/metabolism , Cytokinesis , Microtubules/metabolism , Secretory Pathway , Adenosine Triphosphatases/genetics , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Weight , Mutation/genetics , Protein Transport , Spastin
15.
Hum Mol Genet ; 18(20): 3805-21, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19620182

ABSTRACT

The hereditary spastic paraplegias (HSPs) are genetic conditions characterized by distal axonopathy of the longest corticospinal tract axons, and so their study provides an important opportunity to understand mechanisms involved in axonal maintenance and degeneration. A group of HSP genes encode proteins that localize to endosomes. One of these is NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome 1) and we have shown recently that its Drosophila homologue spichthyin inhibits bone morphogenic protein (BMP) signalling, although the relevance of this finding to the mammalian protein was not known. We show here that mammalian NIPA1 is also an inhibitor of BMP signalling. NIPA1 physically interacts with the type II BMP receptor (BMPRII) and we demonstrate that this interaction does not require the cytoplasmic tail of BMPRII. We show that the mechanism by which NIPA1 inhibits BMP signalling involves downregulation of BMP receptors by promoting their endocytosis and lysosomal degradation. Disease-associated mutant versions of NIPA1 alter the trafficking of BMPRII and are less efficient at promoting BMPRII degradation than wild-type NIPA1. In addition, we demonstrate that two other members of the endosomal group of HSP proteins, spastin and spartin, are inhibitors of BMP signalling. Since BMP signalling is important for distal axonal function, we propose that dysregulation of BMP signalling could be a unifying pathological component in this endosomal group of HSPs, and perhaps of importance in other conditions in which distal axonal degeneration is found.


Subject(s)
Adenosine Triphosphatases/metabolism , Bone Morphogenetic Proteins/metabolism , Nuclear Proteins/metabolism , Proteins/metabolism , Signal Transduction , Spastic Paraplegia, Hereditary/metabolism , Adaptor Proteins, Signal Transducing , Adenosine Triphosphatases/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Proteins/genetics , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line , Cell Membrane/genetics , Cell Membrane/metabolism , Endosomes/genetics , Endosomes/metabolism , Humans , Neurons/metabolism , Nuclear Proteins/genetics , Protein Binding , Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , Spastin
16.
Biochim Biophys Acta ; 1793(4): 615-24, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19167432

ABSTRACT

The delivery of proteins from the plasma membrane to the lysosome for degradation is essential for normal cellular function. There is now a good understanding of the protein complexes involved in sorting proteins at the plasma membrane and into the intralumenal vesicles of the multi-vesicular body. A combination of cell free content mixing assays and live-cell imaging has dissected out the final step in delivery of macromolecules to the lysosome from the multi-vesicular body and provided insights into the molecular mechanisms by which late endosomes and lysosomes exchange lumenal contents. The endocytic pathway has provided a platform with which to understand the autophagic and phagocytic pathways, but the fine details of how traffic through these pathways is regulated remain to be determined.


Subject(s)
Endocytosis , Lysosomes/metabolism , Membrane Proteins/metabolism , Animals , Cell Membrane/metabolism , Clathrin/metabolism , Humans , Protein Transport
17.
Microbiology (Reading) ; 156(Pt 7): 2205-2215, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20395269

ABSTRACT

Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzyme interrupts the transit of E. coli K1 from gut to brain via the blood circulation and prevents death from systemic infection. We now show that experimental E. coli K1 infection is accompanied by extensive modulation of host gene expression in the liver, spleen and brain tissues of neonatal rats. Bacterial invasion of the brain resulted in a threefold or greater upregulation of approximately 400 genes, a large number of which were associated with the induction of inflammation and the immune and stress responses: these included genes encoding C-X-C and C-C chemokines, lipocalins, cytokines, apolipoproteins and enzymes involved in the synthesis of low-molecular-mass inflammatory mediators. Administration of a single dose of endoE, 24 h after initiation of systemic infection, markedly reduced, but did not completely abrogate, these changes in gene expression, suggesting that attenuation of E. coli K1 virulence by removal of the polySia capsule may minimize the attendant inflammatory processes that contribute to poor outcome in these severe systemic infections.


Subject(s)
Bacterial Capsules/metabolism , Escherichia coli Infections/genetics , Escherichia coli/pathogenicity , Neuraminidase/administration & dosage , Up-Regulation , Animals , Bacterial Capsules/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/mortality , Gene Expression , Humans , Neuraminidase/genetics , Neuraminidase/metabolism , Rats , Rats, Wistar , Sialic Acids/metabolism , Virulence
18.
Biochem Soc Trans ; 38(6): 1413-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21118098

ABSTRACT

The delivery of endocytosed cargo to lysosomes occurs through kissing and direct fusion of late endosomes/MVBs (multivesicular bodies) and lysosomes. Live-cell and electron microscopy experiments together with cell-free assays have allowed us to describe the characteristics of the delivery process and determine the core protein machinery required for fusion. The ESCRT (endosomal sorting complex required for transport) machinery is required for MVB biogenesis. The HOPS (homotypic fusion and vacuole protein sorting) complex is required for endosome-lysosome tethering and a trans-SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex including the R-SNARE VAMP7 (vesicle-associated membrane protein 7) mediates endosome-lysosome membrane fusion. Protein-binding partners of VAMP7 including the clathrin adaptors AP-3 (adaptor protein 3) and Hrb (HIV Rev-binding protein) are required for its correct intracellular localization and function. Overall, co-ordination of the activities of ESCRT, HOPS and SNARE complexes are required for efficient delivery of endocytosed macromolecules to lysosomes. Endosome-lysosome fusion results in a hybrid organelle from which lysosomes are re-formed. Defects in fusion and/or lysosome reformation occur in a number of lysosome storage diseases.


Subject(s)
Endosomes/metabolism , Intracellular Membranes/metabolism , Lysosomes/metabolism , Membrane Fusion/physiology , Calcium/metabolism , Endocytosis/physiology , Endosomes/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Lysosomes/ultrastructure , Membrane Proteins/metabolism , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Protein Transport/physiology , SNARE Proteins/metabolism
19.
J Cell Biol ; 169(2): 285-95, 2005 Apr 25.
Article in English | MEDLINE | ID: mdl-15837803

ABSTRACT

Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane. When optineurin is depleted from cells using RNA interference, myosin VI is lost from the Golgi complex, the Golgi is fragmented and exocytosis of vesicular stomatitis virus G-protein to the plasma membrane is dramatically reduced. Two further binding partners for optineurin have been identified: huntingtin and Rab8. We show that myosin VI and Rab8 colocalize around the Golgi complex and in vesicles at the plasma membrane and overexpression of constitutively active Rab8-Q67L recruits myosin VI onto Rab8-positive structures. These results show that optineurin links myosin VI to the Golgi complex and plays a central role in Golgi ribbon formation and exocytosis.


Subject(s)
Golgi Apparatus/physiology , Myosin Heavy Chains/physiology , Transcription Factor TFIIIA/metabolism , Animals , Biological Transport/physiology , CHO Cells , Cell Cycle Proteins , Chickens , Cricetinae , Exocytosis , Gene Expression , HeLa Cells , Humans , Huntingtin Protein , Membrane Glycoproteins/metabolism , Membrane Transport Proteins , Myosin Heavy Chains/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Binding , RNA Interference , Transcription Factor TFIIIA/genetics , Transport Vesicles/physiology , Two-Hybrid System Techniques , Viral Envelope Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
20.
Biochem J ; 423(1): 31-9, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19580544

ABSTRACT

The HSPs (hereditary spastic paraplegias) are genetic conditions in which there is distal degeneration of the longest axons of the corticospinal tract, resulting in spastic paralysis of the legs. The gene encoding spartin is mutated in Troyer syndrome, an HSP in which paralysis is accompanied by additional clinical features. There has been controversy over the subcellular distribution of spartin. We show here that, at steady state, endogenous spartin exists in a cytosolic pool that can be recruited to endosomes and to lipid droplets. Cytosolic endogenous spartin is mono-ubiquitinated and we demonstrate that it interacts via a PPXY motif with the ubiquitin E3 ligases AIP4 [atrophin-interacting protein 4; ITCH (itchy E3 ubiquitin protein ligase homologue] [corrected] and AIP5 (WWP1). Surprisingly, the PPXY motif, AIP4 and AIP5 are not required for spartin's ubiquitination, and so we propose that spartin acts as an adaptor for these proteins. Our results suggest that spartin is involved in diverse cellular functions, which may be of relevance to the complex phenotype seen in Troyer syndrome.


Subject(s)
Endosomes/metabolism , Lipid Metabolism , Proteins/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Cycle Proteins , HeLa Cells , Humans , Lipid Metabolism/physiology , Liposomes/metabolism , Mice , PC12 Cells , Protein Binding , Rats , Tumor Cells, Cultured , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL