Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Cell ; 81(3): 629-637.e5, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400924

ABSTRACT

As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/enzymology , Glucose/pharmacology , Membrane Proteins/metabolism , Muscle, Skeletal/drug effects , Obesity/enzymology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Disease Models, Animal , HEK293 Cells , Humans , Macaca mulatta , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Muscle, Skeletal/enzymology , Obesity/blood , Obesity/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Reactive Oxygen Species/metabolism , Signal Transduction , Ubiquitination
2.
Circ Res ; 131(12): 962-976, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36337049

ABSTRACT

BACKGROUND: As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS: Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS: We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3ß (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3ß-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3ß, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS: S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.


Subject(s)
Diabetes Mellitus, Experimental , Reperfusion Injury , Mice , Animals , Phosphorylation , Carrier Proteins/metabolism , Serine/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Diabetes Mellitus, Experimental/complications , Membrane Proteins/metabolism , Insulin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ischemia
3.
Circ Res ; 130(6): 887-903, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35152717

ABSTRACT

BACKGROUND: CaMKII (Ca2+/calmodulin-dependent kinase II) plays a central role in cardiac ischemia/reperfusion (I/R) injury-an important therapeutic target for ischemic heart disease. In the heart, CaMKII-δ is the predominant isoform and further alternatively spliced into 11 variants. In humans, CaMKII-δ9 and CaMKII-δ3, the major cardiac splice variants, inversely regulate cardiomyocyte viability with the former pro-death and the latter pro-survival. However, it is unknown whether specific inhibition of the detrimental CaMKII-δ9 prevents cardiac I/R injury and, if so, what is the underlying mechanism. Here, we aim to investigate the cardioprotective effect of specific CaMKII-δ9 inhibition against myocardial I/R damage and determine the underlying mechanisms. METHODS: The role and mechanism of CaMKII-δ9 in cardiac I/R injury were investigated in mice in vivo, neonatal rat ventricular myocytes, and human embryonic stem cell-derived cardiomyocytes. RESULTS: We demonstrate that CaMKII-δ9 inhibition with knockdown or knockout of its feature exon, exon 16, protects the heart against I/R-elicited injury and subsequent heart failure. I/R-induced cardiac inflammation was also ameliorated by CaMKII-δ9 inhibition, and compared with the previously well-studied CaMKII-δ2, CaMKII-δ9 overexpression caused more profound cardiac inflammation. Mechanistically, in addition to IKKß (inhibitor of NF-κB [nuclear factor-κB] kinase subunit ß), CaMKII-δ9, but not δ2, directly interacted with IκBα (NF-κB inhibitor α) with its feature exon 13-16-17 combination and increased IκBα phosphorylation and consequently elicited more pronounced activation of NF-κB signaling and inflammatory response. Furthermore, the essential role of CaMKII-δ9 in myocardial inflammation and damage was confirmed in human cardiomyocytes. CONCLUSIONS: We not only identified CaMKII-δ9-IKK/IκB-NF-κB signaling as a new regulator of human cardiomyocyte inflammation but also demonstrated that specifically targeting CaMKII-δ9, the most abundant CaMKII-δ splice variant in human heart, markedly suppresses I/R-induced cardiac NF-κB activation, inflammation, and injury and subsequently ameliorates myocardial remodeling and heart failure, providing a novel therapeutic strategy for various ischemic heart diseases.


Subject(s)
Heart Failure , Myocardial Reperfusion Injury , Myocarditis , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Inflammation/genetics , Inflammation/prevention & control , Ischemia , Mice , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac , NF-KappaB Inhibitor alpha , NF-kappa B , Rats
4.
Ann Hepatol ; : 101582, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276980

ABSTRACT

Hepatitis C virus (HCV) belongs to the Flaviviridae family, and is a single-stranded RNA virus with positive polarity. It is the primary cause of hepatocellular carcinoma (HCC) worldwide. The treatment of HCV has entered a new era with the advent of direct-acting antiviral drugs (DAAs) and is associated with cure rates of more than 95 %, making HCV the only curable viral disease. The successful treatment of chronic hepatitis C has greatly reduced, but not eliminated, the risk of HCC. Certain individuals, especially those with cirrhosis already present, remain vulnerable to HCC after achieving a sustained virological response (SVR). This article systematically reviews the recent studies on the risk and mechanisms of HCC development after HCV viral cure, the screening and predictive value of biological markers, and patient surveillance. Factors such as older age, diabetes, hepatic fat accumulation, alcohol use, and lack of fibrosis reversal are linked to increased HCC risk after HCV cure. The mechanism of HCC development after DAAs treatment remains unclear, but the possible mechanisms include immune cell dysfunction during HCV infection, cytokine network imbalance, epigenetic alterations, and host factors. Several biological markers and risk prediction models have been used to monitor the risk of HCC in CHC patients who have achieved SVR, but most still require validation and standardization. The implementation of risk-stratified surveillance programs is becoming urgent from a cost-effective point of view, but the availability of validated biomarkers to predict HCC in cured patients remains an unmet clinical need. Additionally, managing CHC patients who achieve SVR is becoming a growing challenge as an increasing number of HCV patients are cured.

5.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35317609

ABSTRACT

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Subject(s)
Heart Failure , Myocardial Reperfusion Injury , Neoplasms , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Failure/pathology , Humans , Indoles , Ischemia/metabolism , Mice , Mice, Nude , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Neoplasms/pathology , Rats , Sulfonamides
6.
Biochem J ; 479(17): 1909-1916, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36053137

ABSTRACT

MG53 is a tripartite motif (TRIM) family E3 ligase and plays important biological functions. Here we present the cryo-EM structure of human MG53, showing that MG53 is a homodimer consisting of a 'body' and two 'wings'. Intermolecular interactions are mainly distributed in the 'body' which is relatively stable, while two 'wings' are more dynamic. The overall architecture of MG53 is distinct from those of TRIM20 and TRIM25, illustrating the broad structural diversity of this protein family.


Subject(s)
Carrier Proteins , Membrane Proteins , Tripartite Motif Proteins/chemistry , Carrier Proteins/metabolism , Cryoelectron Microscopy , Humans , Membrane Proteins/metabolism , Protein Multimerization , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Mol Biol Evol ; 38(7): 2930-2945, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33744959

ABSTRACT

Cis-regulatory elements play important roles in tissue-specific gene expression and in the evolution of various phenotypes, and mutations in promoters and enhancers may be responsible for adaptations of species to environments. TRIM72 is a highly conserved protein that is involved in energy metabolism. Its expression in the heart varies considerably in primates, with high levels of expression in Old World monkeys and near absence in hominids. Here, we combine phylogenetic hypothesis testing and experimentation to demonstrate that mutations in promoter are responsible for the differences among primate species in the heart-specific expression of TRIM72. Maximum likelihood estimates of lineage-specific substitution rates under local-clock models show that relative to the evolutionary rate of introns, the rate of promoter was accelerated by 78% in the common ancestor of Old World monkeys, suggesting a role for positive selection in the evolution of the TRIM72 promoter, possibly driven by selective pressure due to changes in cardiac physiology after species divergence. We demonstrate that mutations in the TRIM72 promoter account for the differential myocardial TRIM72 expression of the human and the rhesus macaque. Furthermore, changes in TRIM72 expression alter the expression of genes involved in oxidative phosphorylation, which in turn affects mitochondrial respiration and cardiac energy capacity. On a broader timescale, phylogenetic regression analyses of data from 29 mammalian species show that mammals with high cardiac expression of TRIM72 have high heart rate, suggesting that the expression changes of TRIM72 may be related to differences in the heart physiology of those species.


Subject(s)
Biological Evolution , Myocardium/metabolism , Primates/genetics , Promoter Regions, Genetic/genetics , Tripartite Motif Proteins/genetics , Animals , Basal Metabolism , Gene Expression Regulation/genetics , Heart Rate , Humans , Mutation , Oxidative Phosphorylation , Primates/metabolism , Tripartite Motif Proteins/metabolism
8.
Circulation ; 142(11): 1077-1091, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32677469

ABSTRACT

BACKGROUND: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (mitsugumin 53; also called TRIM72), not only plays an essential role in IPC-mediated cardioprotection against ischemia/reperfusion injury but also ameliorates mechanical damage. In addition to its intracellular actions, as a myokine/cardiokine, MG53 can be secreted from the heart and skeletal muscle in response to metabolic stress. However, it is unknown whether IPC-mediated cardioprotection is causally related to MG53 secretion and, if so, what the underlying mechanism is. METHODS: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo, isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. Moreover, using recombinant MG53 proteins, we investigated the potential biological function of secreted MG53 in the context of IPC and ischemia/reperfusion injury. RESULTS: We found that IPC triggered robust MG53 secretion in rodents in vivo, perfused hearts, and cultured cardiac myocytes without causing cell membrane leakage. Mechanistically, IPC promoted MG53 secretion through H2O2-evoked activation of protein kinase-C-δ. Specifically, IPC-induced myocardial MG53 secretion was mediated by H2O2-triggered phosphorylation of protein kinase-C-δ at Y311, which is necessary and sufficient to facilitate MG53 secretion. Functionally, systemic delivery of recombinant MG53 proteins to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice but also protected rodent hearts from ischemia/reperfusion injury even in the absence of IPC. Moreover, oxidative stress by H2O2 augmented MG53 secretion, and MG53 knockdown exacerbated H2O2-induced cell injury in human embryonic stem cell-derived cardiomyocytes, despite relatively low basal expression of MG53 in human heart. CONCLUSIONS: We conclude that IPC and oxidative stress can trigger MG53 secretion from the heart via an H2O2-protein kinase-C-δ-dependent mechanism and that extracellular MG53 can participate in IPC protection against cardiac ischemia/reperfusion injury.


Subject(s)
Hydrogen Peroxide/pharmacology , Ischemic Preconditioning , Membrane Proteins/metabolism , Myocardial Reperfusion Injury , Protein Kinase C-delta/metabolism , Signal Transduction/drug effects , Animals , Membrane Proteins/genetics , Mice , Mice, Knockout , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Protein Kinase C-delta/genetics
9.
Circulation ; 139(7): 901-914, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30586741

ABSTRACT

BACKGROUND: Mitsugumin 53 (MG53 or TRIM72), a striated muscle-specific E3 ligase, promotes ubiquitin-dependent degradation of the insulin receptor and insulin receptor substrate-1 and subsequently induces insulin resistance, resulting in metabolic syndrome and type 2 diabetes mellitus (T2DM). However, it is unknown how MG53 from muscle regulates systemic insulin response and energy metabolism. Increasing evidence demonstrates that muscle secretes proteins as myokines or cardiokines that regulate systemic metabolic processes. We hypothesize that MG53 may act as a myokine/cardiokine, contributing to interorgan regulation of insulin sensitivity and metabolic homeostasis. METHODS: Using perfused rodent hearts or skeletal muscle, we investigated whether high glucose, high insulin, or their combination (conditions mimicking metabolic syndrome or T2DM) alters MG53 protein concentration in the perfusate. We also measured serum MG53 levels in rodents and humans in the presence or absence of metabolic diseases, particularly T2DM. The effects of circulating MG53 on multiorgan insulin response were evaluated by systemic delivery of recombinant MG53 protein to mice. Furthermore, the potential involvement of circulating MG53 in the pathogenesis of T2DM was assessed by neutralizing blood MG53 with monoclonal antibodies in diabetic db/db mice. Finally, to delineate the mechanism underlying the action of extracellular MG53 on insulin signaling, we analyzed the potential interaction of MG53 with extracellular domain of insulin receptor using coimmunoprecipitation and surface plasmon resonance assays. RESULTS: Here, we demonstrate that MG53 is a glucose-sensitive myokine/cardiokine that governs the interorgan regulation of insulin sensitivity. First, high glucose or high insulin induces MG53 secretion from isolated rodent hearts and skeletal muscle. Second, hyperglycemia is accompanied by increased circulating MG53 in humans and rodents with diabetes mellitus. Third, systemic delivery of recombinant MG53 or cardiac-specific overexpression of MG53 causes systemic insulin resistance and metabolic syndrome in mice, whereas neutralizing circulating MG53 with monoclonal antibodies has therapeutic effects in T2DM db/db mice. Mechanistically, MG53 binds to the extracellular domain of the insulin receptor and acts as an allosteric blocker. CONCLUSIONS: Thus, MG53 has dual actions as a myokine/cardiokine and an E3 ligase, synergistically inhibiting the insulin signaling pathway. Targeting circulating MG53 opens a new therapeutic avenue for T2DM and its complications.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus/blood , Energy Metabolism , Insulin Resistance , Membrane Proteins/metabolism , Adult , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/metabolism , Biomarkers/blood , Blood Glucose/drug effects , Case-Control Studies , Diabetes Mellitus/drug therapy , Diabetes Mellitus/enzymology , Diabetes Mellitus/immunology , Disease Models, Animal , Energy Metabolism/drug effects , Female , HEK293 Cells , Homeostasis , Humans , Hypoglycemic Agents/pharmacology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/metabolism , Muscle, Skeletal/enzymology , Myocardium/enzymology , Rats, Sprague-Dawley , Rats, Zucker , Receptor, Insulin/metabolism , Signal Transduction , Tripartite Motif Proteins/metabolism , Vesicular Transport Proteins/metabolism
10.
Nature ; 494(7437): 375-9, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23354051

ABSTRACT

Insulin resistance is a fundamental pathogenic factor present in various metabolic disorders including obesity and type 2 diabetes. Although skeletal muscle accounts for 70-90% of insulin-stimulated glucose disposal, the mechanism underlying muscle insulin resistance is poorly understood. Here we show in mice that muscle-specific mitsugumin 53 (MG53; also called TRIM72) mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia. MG53 expression is markedly elevated in models of insulin resistance, and MG53 overexpression suffices to trigger muscle insulin resistance and metabolic syndrome sequentially. Conversely, ablation of MG53 prevents diet-induced metabolic syndrome by preserving the insulin receptor, IRS1 and insulin signalling integrity. Mechanistically, MG53 acts as an E3 ligase targeting the insulin receptor and IRS1 for ubiquitin-dependent degradation, comprising a central mechanism controlling insulin signal strength in skeletal muscle. These findings define MG53 as a novel therapeutic target for treating metabolic disorders and associated cardiovascular complications.


Subject(s)
Carrier Proteins/metabolism , Insulin Resistance/physiology , Insulin , Metabolic Syndrome/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Carrier Proteins/genetics , Diabetes Mellitus, Type 2 , Diet, High-Fat , Dyslipidemias/metabolism , Gene Deletion , Hypertension/metabolism , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/genetics , Male , Membrane Proteins , Metabolic Syndrome/enzymology , Metabolic Syndrome/genetics , Metabolic Syndrome/prevention & control , Mice , Obesity/chemically induced , Obesity/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptor, Insulin/metabolism , Signal Transduction , Ubiquitination
11.
Mol Pharmacol ; 92(3): 211-218, 2017 09.
Article in English | MEDLINE | ID: mdl-28432201

ABSTRACT

MG53 (also known as tripartite motif, TRIM72) is a cardiac and skeletal muscle-specific TRIM-family protein that exhibits multiple biologic functions. First, MG53 participates in plasma membrane repair of the heart, skeletal muscle, and, other tissues. Second, MG53 is essentially involved in the cardioprotection of cardiac ischemic, preconditioning, and postconditioning by activating the PI3K-Akt-GSK3ß and ERK1/2 survival signaling pathways. Moreover, systemic delivery of recombinant MG53 protein ameliorates the impact of a range of injury insults on the heart, skeletal muscle, lung, kidney, skin, and brain. It is noteworthy that chronic upregulation of MG53 induces insulin resistance and metabolic diseases, such as type 2 diabetes and its cardiovascular complications, by acting as an E3 ligase to mediate the degradation of insulin receptor and insulin receptor substrate-1. In addition, MG53 negatively regulates myogenesis. In summary, MG53 is a multifunctional protein involved in the vital physiologic and pathologic processes of multiple organs and is a promising therapeutic target for various human diseases. In this review, we comprehensively summarize current research progress on the biologic functions and therapeutic potential of MG53.


Subject(s)
Carrier Proteins/physiology , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/chemistry , Carrier Proteins/genetics , Diabetic Cardiomyopathies/etiology , Humans , Insulin Resistance , Muscle Development , Muscle, Skeletal/physiology , Myocardial Reperfusion Injury/prevention & control , Transcription, Genetic , Tripartite Motif Proteins
12.
Appl Opt ; 56(28): 7915-7920, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29047778

ABSTRACT

Foveated imaging systems have the ability to capture local high-resolution or high-magnification images with wide field of view (FOV); thus, they have great potential for applications in the field of monitoring and remote sensing of unmanned aerial vehicles. Hence, foveated optical systems are in strong demand. However, the existing foveated imaging systems either are equipped with expensive modulators or require fixing the local high resolution imaging field, which is not suitable for mass production or object tracking in industrial applications. We propose a low-cost dynamic real-time foveated imaging system for extensive use in the listed applications. Specifically, we place a microlens behind the first intermediary image plane to modulate the local focal length, constructing a local high magnification imaging channel. One two-axis translation stage drives the microlens to scan in the plane perpendicular to the optical axis, resulting in dynamic local high magnifying imaging. Furthermore, the peripheral imaging channel and the foveated imaging channel focus on the same detector, and the post image fusion is unnecessary; the system consists of only a common aspherical lens and thus is very inexpensive. The experimental system has a focal length of 25 mm, a full FOV of 30°, and an entrance pupil diameter of 5 mm, while the local high magnifying imaging channel has a focal length of 35 mm and FOV of 15°. Experiment results show that the low-cost dynamic real-time foveated imaging system performs very well.

13.
Sheng Li Xue Bao ; 68(4): 505-16, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27546510

ABSTRACT

Mitsugumin 53 (MG53), also named Trim72, is a multi-functional TRIM-family protein, which is abundantly expressed in cardiac and skeletal muscle. It has been shown that MG53 not only plays important physiological roles but also acts as a crucial pathogenic factor of various diseases. First, MG53 preserves cardiac and skeletal muscle integrity via facilitating plasma membrane repair. Second, MG53 is essentially involved in cardiac ischemic preconditioning and postconditioning by activating PI3K-Akt-GSK3ß and ERK1/2 cell survival signaling pathways. Moreover, systemic delivery of recombinant MG53 is able to abolish mechanic or ischemia-reperfusion (I/R)-induced injury of multiple organs, including heart, skeletal muscle, lung, kidney and skin. Importantly, MG53 acts as an E3 ligase to mediate the degradation of insulin receptor and insulin receptor substrate-1, and subsequently induces insulin resistance and metabolic diseases such as type-2 diabetes and its cardiovascular complications. In addition, MG53 negatively regulates myogenesis. As a potential therapeutic target of human diseases, multiple facets of MG53 biological function and mechanisms of action should be taken into the consideration to maximize its beneficial effects and minimize potential side-effects. Here in this review, we intend to comprehensively summarize the current progresses on the biological functions of MG53, focusing on its clinical value as a therapeutic target.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Carrier Proteins , Humans , Signal Transduction , Tripartite Motif Proteins
15.
Proc Natl Acad Sci U S A ; 108(38): 15834-9, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21876179

ABSTRACT

The zinc-finger antiviral protein (ZAP) was originally identified as a host factor that inhibits the replication of Moloney murine leukemia virus. Here we report that ZAP inhibits HIV-1 infection by promoting the degradation of specific viral mRNAs. Overexpression of ZAP rendered cells resistant to HIV-1 infection in a ZAP expression level-dependent manner, whereas depletion of endogenous ZAP enhanced HIV-1 infection. Both human and rat ZAP inhibited the propagation of replication-competent HIV-1. ZAP specifically targeted the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. We provide evidence indicating that ZAP selectively recruits cellular poly(A)-specific ribonuclease (PARN) to shorten the poly(A) tail of target viral mRNA and recruits the RNA exosome to degrade the RNA body from the 3' end. In addition, ZAP recruits cellular decapping complex through its cofactor RNA helicase p72 to initiate degradation of the target viral mRNA from the 5' end. Depletion of each of these mRNA degradation enzymes reduced ZAP's activity. Our results indicate that ZAP inhibits HIV-1 by recruiting both the 5' and 3' mRNA degradation machinery to specifically promote the degradation of multiply spliced HIV-1 mRNAs.


Subject(s)
HIV-1/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Alternative Splicing , Blotting, Western , Endoribonucleases/genetics , Endoribonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , HEK293 Cells , HIV-1/physiology , Host-Pathogen Interactions , Humans , Immunoprecipitation , Protein Binding , RNA Interference , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
16.
Nat Metab ; 6(4): 708-723, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499763

ABSTRACT

Cachexia affects 50-80% of patients with cancer and accounts for 20% of cancer-related death, but the underlying mechanism driving cachexia remains elusive. Here we show that circulating lactate levels positively correlate with the degree of body weight loss in male and female patients suffering from cancer cachexia, as well as in clinically relevant mouse models. Lactate infusion per se is sufficient to trigger a cachectic phenotype in tumour-free mice in a dose-dependent manner. Furthermore, we demonstrate that adipose-specific G-protein-coupled receptor (GPR)81 ablation, similarly to global GPR81 deficiency, ameliorates lactate-induced or tumour-induced adipose and muscle wasting in male mice, revealing adipose GPR81 as the major mediator of the catabolic effects of lactate. Mechanistically, lactate/GPR81-induced cachexia occurs independently of the well-established protein kinase A catabolic pathway, but it is mediated by a signalling cascade sequentially activating Gi-Gßγ-RhoA/ROCK1-p38. These findings highlight the therapeutic potential of targeting GPR81 for the treatment of this life-threatening complication of cancer.


Subject(s)
Cachexia , Lactic Acid , Neoplasms , Receptors, G-Protein-Coupled , Cachexia/metabolism , Cachexia/etiology , Animals , Receptors, G-Protein-Coupled/metabolism , Mice , Humans , Lactic Acid/metabolism , Male , Female , Neoplasms/metabolism , Neoplasms/complications , Signal Transduction
17.
J Biol Chem ; 287(27): 22882-8, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22514281

ABSTRACT

Zinc-finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses, including HIV-1, Ebola virus, and Sindbis virus. ZAP binds directly to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. ZAP has also been suggested to repress translation of the target mRNA. In this study, we report that ZAP is phosphorylated by glycogen synthase kinase 3ß (GSK3ß). GSK3ß sequentially phosphorylated Ser-270, Ser-266, Ser-262, and Ser-257 of rat ZAP. Inhibition of GSK3ß by inhibitor SB216763 or down-regulation of GSK3ß by RNAi reduced the antiviral activity of ZAP. These results indicate that phosphorylation of ZAP by GSK3ß modulates ZAP activity.


Subject(s)
Carrier Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Lentivirus Infections/metabolism , Lentivirus/genetics , Animals , Carrier Proteins/genetics , Gene Library , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Humans , Indoles/pharmacology , Lentivirus Infections/genetics , Lentivirus Infections/immunology , Maleimides/pharmacology , Phosphorylation/physiology , RNA, Small Interfering/genetics , RNA, Viral/metabolism , RNA-Binding Proteins , Rats , Serine/metabolism , Threonine/metabolism
18.
Signal Transduct Target Ther ; 8(1): 263, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37414783

ABSTRACT

Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.


Subject(s)
Stomach Neoplasms , Ubiquitin-Protein Ligases , Humans , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cell Proliferation , Cell Cycle Checkpoints , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Membrane Proteins
19.
Diabetes ; 71(2): 298-314, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34844991

ABSTRACT

Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardioprotection, but its therapeutic value is complicated by its E3 ligase activity, which mediates metabolic disorders. Here, we show that an E3 ligase-dead mutant, MG53-C14A, retains its cardioprotective function without causing metabolic adverse effects. When administered in normal animals, both the recombinant human wild-type MG53 protein (rhMG53-WT) and its E3 ligase-dead mutant (rhMG53-C14A) protected the heart equally from myocardial infarction and ischemia/reperfusion (I/R) injury. However, in diabetic db/db mice, rhMG53-WT treatment markedly aggravated hyperglycemia, cardiac I/R injury, and mortality, whereas acute and chronic treatment with rhMG53-C14A still effectively ameliorated I/R-induced myocardial injury and mortality or diabetic cardiomyopathy, respectively, without metabolic adverse effects. Furthermore, knock-in of MG53-C14A protected the mice from high-fat diet-induced metabolic disorders and cardiac damage. Thus, the E3 ligase-dead mutant MG53-C14A not only protects the heart from acute myocardial injury but also counteracts metabolic stress, providing a potentially important therapy for the treatment of acute myocardial injury in metabolic disorders, including diabetes and obesity.


Subject(s)
Membrane Proteins/genetics , Metabolic Syndrome/genetics , Myocardial Reperfusion Injury/prevention & control , Animals , Cells, Cultured , Cytoprotection/genetics , Diabetic Cardiomyopathies/complications , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Diet, High-Fat , Female , Heart/physiopathology , Humans , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/physiopathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Reperfusion Injury/etiology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Signal Transduction/genetics
20.
Circulation ; 121(23): 2565-74, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20516375

ABSTRACT

BACKGROUND: Ischemic heart disease is the greatest cause of death in Western countries. The deleterious effects of cardiac ischemia are ameliorated by ischemic preconditioning (IPC), in which transient ischemia protects against subsequent severe ischemia/reperfusion injury. IPC activates multiple signaling pathways, including the reperfusion injury salvage kinase pathway (mainly PI3K-Akt-glycogen synthase kinase-3beta [GSK3beta] and ERK1/2) and the survivor activating factor enhancement pathway involving activation of the JAK-STAT3 axis. Nevertheless, the fundamental mechanism underlying IPC is poorly understood. METHODS AND RESULTS: In the present study, we define MG53, a muscle-specific TRIM-family protein, as a crucial component of cardiac IPC machinery. Ischemia/reperfusion or hypoxia/oxidative stress applied to perfused mouse hearts or neonatal rat cardiomyocytes, respectively, causes downregulation of MG53, and IPC can prevent ischemia/reperfusion-induced decrease in MG53 expression. MG53 deficiency increases myocardial vulnerability to ischemia/reperfusion injury and abolishes IPC protection. Overexpression of MG53 attenuates whereas knockdown of MG53 enhances hypoxia- and H(2)O(2)-induced cardiomyocyte death. The cardiac protective effects of MG53 are attributable to MG53-dependent interaction of caveolin-3 with phosphatidylinositol 3 kinase and subsequent activation of the reperfusion injury salvage kinase pathway without altering the survivor activating factor enhancement pathway. CONCLUSIONS: These results establish MG53 as a primary component of the cardiac IPC response, thus identifying a potentially important novel therapeutic target for the treatment of ischemic heart disease.


Subject(s)
Carrier Proteins/biosynthesis , Ischemic Preconditioning, Myocardial/methods , Muscle Proteins/biosynthesis , Myocardium/metabolism , Vesicular Transport Proteins/biosynthesis , Animals , Carrier Proteins/genetics , Carrier Proteins/physiology , In Vitro Techniques , Male , Membrane Proteins , Mice , Mice, Knockout , Muscle Proteins/genetics , Muscle Proteins/physiology , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL