Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 23(10): 1484-1494, 2022 10.
Article in English | MEDLINE | ID: mdl-36138182

ABSTRACT

The heterogeneous cellular microenvironment of human airway chronic inflammatory diseases, including chronic rhinosinusitis (CRS) and asthma, is still poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) on the nasal mucosa of healthy individuals and patients with three subtypes of CRS and identified disease-specific cell subsets and molecules that specifically contribute to the pathogenesis of CRS subtypes. As such, ALOX15+ macrophages contributed to the type 2 immunity-driven pathogenesis of one subtype of CRS, eosinophilic CRS with nasal polyps (eCRSwNP), by secreting chemokines that recruited eosinophils, monocytes and T helper 2 (TH2) cells. An inhibitor of ALOX15 reduced the release of proinflammatory chemokines in human macrophages and inhibited the overactivation of type 2 immunity in a mouse model of eosinophilic rhinosinusitis. Our findings advance the understanding of the heterogeneous immune microenvironment and the pathogenesis of CRS subtypes and identify potential therapeutic approaches for the treatment of CRS and potentially other type 2 immunity-mediated diseases.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Animals , Chronic Disease , Eosinophils , Humans , Mice , Nasal Mucosa
2.
Acc Chem Res ; 57(18): 2689-2699, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39190869

ABSTRACT

ConspectusTwo-dimensional (2D) materials such as graphene and MXenes offer appealing opportunities in electrochemical energy storage due to their large surface area, tunable surface chemistry, and unique electronic properties. One of the primary challenges in utilizing these materials for practical electrodes, especially those with industrial-level thickness, is developing a highly interconnected and porous conductive network. This network is crucial for supporting continuous electron transport, rapid ion diffusion, and effective participation of all active materials in electrochemical reactions. Moreover, the demand for efficient energy storage in advanced electronic devices and electric vehicles has led to the need for not only thicker but also denser electrodes to achieve compact energy storage. Traditional densification methods often compromise between volumetric capacitance and ion-accessible surface area, which can diminish rate performance. As versatile building blocks, 2D materials can overcome these limitations through the assembly into complex superstructures such as 1D fibers, 2D thin films, and 3D porous networks, a capability less attainable by other nanomaterials.This Account explores the pathways from exfoliated 2D nanosheets to densely packed, yet porous assemblies tailored for compact energy storage. Focusing on graphene and MXenes, we delve into the intricate relationships between surface structure, assembly behaviors, and electrochemical performance. We emphasize the crucial role of surface chemistry and interfacial interactions in forming stable colloidal dispersions and subsequent macroscopic structures. Furthermore, we highlight how solvents, acting as spacers, are instrumental in microstructure formation and how capillary force-driven densification is essential for creating compact assemblies. With precise control over shrinkage, the customized dense assemblies can strike a balance between high packing density and sufficient porosity, ensuring efficient ion transport, mechanical stability, and high volumetric performance across various electrochemical energy storage technologies.Furthermore, we highlight the importance of understanding and manipulating the surface chemistry of 2D materials at the atomic level to optimize their assembly and enhance electrochemical behaviors. Advanced in situ characterizations with high temporal and spatial resolution are necessary to gain deeper insights into the complex assembly process. Moreover, the integration of machine learning and computational chemistry emerges as a promising method to predict and design new materials and assembly strategies, potentially accelerating the development of next-generation energy storage systems. Our insights into the assembly and densification of 2D materials provide a comprehensive foundation for future research and practical applications in compact, high-performance energy storage devices. This exploration sets the stage for a transformative approach to overcoming the challenges of current energy storage technologies, promising significant advancements in 2D materials in the field.

3.
Plant Mol Biol ; 114(5): 107, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333431

ABSTRACT

Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.


Subject(s)
Cucumis sativus , Gamma Rays , Gene Expression Regulation, Plant , Germination , Plant Proteins , Seedlings , Seedlings/radiation effects , Seedlings/growth & development , Seedlings/genetics , Cucumis sativus/radiation effects , Cucumis sativus/genetics , Cucumis sativus/growth & development , Gene Expression Regulation, Plant/radiation effects , Germination/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/radiation effects , Plant Roots/growth & development , Plant Roots/genetics , Cobalt Radioisotopes , Dose-Response Relationship, Radiation , Indoleacetic Acids/metabolism , Chlorophyll/metabolism , Seeds/radiation effects , Seeds/growth & development , Seeds/genetics , Gene Expression Profiling
4.
Mol Cancer ; 23(1): 47, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459511

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) orchestrate a supportive niche that fuels cancer metastatic development in non-small cell lung cancer (NSCLC). Due to the heterogeneity and plasticity of CAFs, manipulating the activated phenotype of fibroblasts is a promising strategy for cancer therapy. However, the underlying mechanisms of fibroblast activation and phenotype switching that drive metastasis remain elusive. METHODS: The clinical implications of fibroblast activation protein (FAP)-positive CAFs (FAP+CAFs) were evaluated based on tumor specimens from NSCLC patients and bioinformatic analysis of online databases. CAF-specific circular RNAs (circRNAs) were screened by circRNA microarrays of primary human CAFs and matched normal fibroblasts (NFs). Survival analyses were performed to assess the prognostic value of circNOX4 in NSCLC clinical samples. The biological effects of circNOX4 were investigated by gain- and loss-of-function experiments in vitro and in vivo. Fluorescence in situ hybridization, luciferase reporter assays, RNA immunoprecipitation, and miRNA rescue experiments were conducted to elucidate the underlying mechanisms of fibroblast activation. Cytokine antibody array, transwell coculture system, and enzyme-linked immunosorbent assay (ELISA) were performed to investigate the downstream effectors that promote cancer metastasis. RESULTS: FAP+CAFs were significantly enriched in metastatic cancer samples, and their higher abundance was correlated with the worse overall survival in NSCLC patients. A novel CAF-specific circRNA, circNOX4 (hsa_circ_0023988), evoked the phenotypic transition from NFs into CAFs and promoted the migration and invasion of NSCLC in vitro and in vivo. Clinically, circNOX4 correlated with the poor prognosis of advanced NSCLC patients. Mechanistically, circNOX4 upregulated FAP by sponging miR-329-5p, which led to fibroblast activation. Furthermore, the circNOX4/miR-329-5p/FAP axis activated an inflammatory fibroblast niche by preferentially inducing interleukin-6 (IL-6) and eventually promoting NSCLC progression. Disruption of the intercellular circNOX4/IL-6 axis significantly suppressed tumor growth and metastatic colonization in vivo. CONCLUSIONS: Our study reveals a role of the circRNA-induced fibroblast niche in tumor metastasis and highlights that targeting the circNOX4/FAP/IL-6 axis is a promising strategy for the intervention of NSCLC metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , In Situ Hybridization, Fluorescence , Lung Neoplasms/pathology , Fibroblasts , MicroRNAs/genetics , MicroRNAs/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Proliferation
5.
Am J Transplant ; 24(7): 1132-1145, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38452932

ABSTRACT

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Mycophenolic Acid , Receptors, Calcitriol , Animals , Mycophenolic Acid/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Receptors, Calcitriol/metabolism , Bile Acids and Salts/metabolism , Immunosuppressive Agents , Mice, Inbred C57BL , Male , Gastrointestinal Diseases/chemically induced , Lithocholic Acid , Humans
6.
BMC Plant Biol ; 24(1): 796, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174961

ABSTRACT

BACKGROUND: Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system. RESULTS: From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqß-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system. CONCLUSION: These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.


Subject(s)
Chenopodium quinoa , Droughts , Glucose , Seeds , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Chenopodium quinoa/physiology , Glucose/metabolism , Seeds/metabolism , Seeds/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling , Carbohydrate Metabolism/genetics
7.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509491

ABSTRACT

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Subject(s)
Anthocyanins , Chenopodium quinoa , Anthocyanins/metabolism , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Leaves/genetics , Plant Leaves/metabolism , Glucosides , Gene Expression Regulation, Plant
8.
Small ; 20(40): e2403057, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38805740

ABSTRACT

Integrating lithium-ion and metal storage mechanisms to improve the capacity of graphite anode holds the potential to boost the energy density of lithium-ion batteries. However, this approach, typically plating lithium metal onto traditional graphite anodes, faces challenges of safety risks of severe lithium dendrite growth and short circuits due to restricted lithium metal accommodation space and unstable lithium plating in commercial carbonate electrolytes. Herein, a slightly expanded spherical graphite anode is developed with a precisely adjustable expanded structure to accommodate metallic lithium, achieving a well-balanced state of high capacity and stable lithium-ion/metal storage in commercial carbonate electrolytes. This structure also enables fast kinetics of both Li intercalation/de-intercalation and plating/stripping. With a total anode capacity of 1.5 times higher (558 mAh g-1) than graphite, the full cell coupled with a high-loading LiNi0.8Co0.1Mn0.1O2 cathode (13 mg cm-2) under a low N/P ratio (≈1.15) achieves long-term cycling stability (75% of capacity after 200 cycles, in contrast to the fast battery failure after 50 cycles with spherical graphite anode). Furthermore, the capacity of the full cell also reaches a low capacity decay rate of 0.05% per cycle at 0.2 C under the low temperature of -20 °C.

9.
Small ; 20(10): e2306713, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919863

ABSTRACT

Luminescent metal clusters have attracted great interest in current research; however, the design synthesis of Al clusters with color-tunable luminescence remains challenging. Herein, an [Al8 (OH)8 (NA)16 ] (Al8 , HNA = nicotinic acid) molecular cluster with dual luminescence properties of fluorescence and room-temperature phosphorescence (RTP) is synthesized by choosing HNA ligand as phosphor. Its prompt photoluminescence (PL) spectrum exhibits approximately white light emission at room temperature. Considering that halogen atoms can be used to regulate the RTP property by balancing the singlet and triplet excitons, different CdX2 (X- = Cl- , Br- , I- ) are introduced into the reactive system of the Al8 cluster, and three new Al8 cluster-based metal-organic frameworks, {[Al8 Cd3 Cl5 (OH)8 (NA)17 H2 O]·2HNA}n (CdCl2 -Al8 ), {[Al8 Cd4 Br7 (OH)8 (NA)16 CH3 CN]·NA·HNA}n (CdBr2 -Al8 ) and {[Al8 Cd8 I16 (OH)8 (NA)16 ]}n (CdI2 -Al8 ) are successfully obtained. They realize the color tunability from blue to yellow at room temperature. The origination of fluorescence and phosphorescence has also been illustrated by structure-property analysis and theoretical calculation. This work provides new insights into the design of multicolor luminescent metal cluster-based materials and develops advanced photo-functional materials for multicolor display, anti-counterfeiting, and encryption applications.

10.
Small ; 20(14): e2308226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37972269

ABSTRACT

The carbon dioxide reduction reaction (CO2RR) driven by electricity can transform CO2 into high-value multi-carbon (C2+) products. Copper (Cu)-based catalysts are efficient but suffer from low C2+ selectivity at high current densities. Here La(OH)3 in Cu catalyst is introduced to modify its electronic structure towards efficient CO2RR to C2+ products at ampere-level current densities. The La(OH)3/Cu catalyst has a remarkable C2+ Faradaic efficiency (FEC2+) of 71.2% which is 2.2 times that of the pure Cu catalyst at a current density of 1,000 mA cm-2 and keeps stable for 8 h. In situ spectroscopy and density functional theory calculations both show that La(OH)3 modifies the electronic structure of Cu. This modification favors *CO adsorption, subsequent hydrogenation, *CO─*COH coupling, and consequently increases C2+ selectivity. This work provides a guidance on facilitating C2+ product formation, and suppressing hydrogen evolution by La(OH)3 modification, enabling efficient CO2RR at ampere-level current densities.

11.
Small ; 20(43): e2401045, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38948959

ABSTRACT

A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.


Subject(s)
Mesenchymal Stem Cells , Oxidative Stress , Reperfusion Injury , Mesenchymal Stem Cells/metabolism , Animals , Oxidative Stress/drug effects , Brain Ischemia/therapy , Brain Ischemia/pathology , Brain Ischemia/drug therapy , Biomimetics/methods , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Ferrocyanides/chemistry , Drug Delivery Systems , Male
12.
Plant Biotechnol J ; 22(6): 1669-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450899

ABSTRACT

The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.


Subject(s)
Genes, Dominant , Hybrid Vigor , Oryza , Plant Breeding , Oryza/genetics , Oryza/growth & development , Hybrid Vigor/genetics , Plant Breeding/methods , CRISPR-Cas Systems , Gene Editing/methods , Hybridization, Genetic , Plants, Genetically Modified/genetics , Genes, Plant/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Plant Physiol ; 192(3): 2067-2080, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36891812

ABSTRACT

ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in ß-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-ß-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling ß-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.


Subject(s)
Solanum lycopersicum , beta Carotene , beta Carotene/metabolism , Lycopene/metabolism , Solanum lycopersicum/genetics , Ascorbic Acid/metabolism , Galactose/metabolism , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
14.
BMC Cancer ; 24(1): 184, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326751

ABSTRACT

BACKGROUND: Sinonasal mucosal melanoma (SNMM) is a relatively rare malignant tumour with a poor prognosis. This study was designed to identify prognostic factors and establish a nomogram model to predict the overall survival (OS) of patients with SNMM. METHODS: A total of 459 patients with SNMM were selected from the Surveillance, Epidemiology, and End Results (SEER) database as the training cohort. Univariate and multivariate Cox regression analyses were used to screen for independent factors associated with patient prognosis and develop the nomogram model. In addition, external validation was performed to evaluate the effectiveness of the nomogram with a cohort of 34 patients with SNMM from Peking Union Medical College Hospital. RESULTS: The median OS in the cohort from the SEER database was 28 months. The 1-year, 3-year and 5-year OS rates were 69.8%, 40.4%, and 30.0%, respectively. Multivariate Cox regression analysis indicated that age, T stage, N stage, surgery and radiotherapy were independent variables associated with OS. The areas under the receiver operating characteristic curves (AUCs) of the nomograms for predicting 1-, 3- and 5-year OS were 0.78, 0.71 and 0.71, respectively, in the training cohort. In the validation cohort, the area under the curve (AUC) of the nomogram for predicting 1-, 3- and 5-year OS were 0.90, 0.75 and 0.78, respectively. Patients were classified into low- and high-risk groups based on the total score of the nomogram. Patients in the low-risk group had a significantly better survival prognosis than patients in the high-risk group in both the training cohort (P < 0.0001) and the validation cohort (P = 0.0016). CONCLUSION: We established and validated a novel nomogram model to predict the OS of SNMM patients stratified by age, T stage, N stage, surgery and radiotherapy. This predictive tool is of potential importance in the realms of patient counselling and clinical decision-making.


Subject(s)
Melanoma , Paranasal Sinus Neoplasms , Humans , Nomograms , Melanoma/therapy , Paranasal Sinus Neoplasms/therapy , Area Under Curve , Clinical Decision-Making , Prognosis , SEER Program
15.
Anal Biochem ; 690: 115527, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565333

ABSTRACT

The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.

16.
Physiol Plant ; 176(2): e14251, 2024.
Article in English | MEDLINE | ID: mdl-38472740

ABSTRACT

Nitrogen (N) is an essential nutrient for plant growth, and most plants absorb it as nitrate. AtNRG2 has been reported to play an important role in nitrate regulation. In this study, we investigated the functions of AtNRG2 family members of Arabidopsis thaliana and maize in nitrate signalling and metabolism. Our results showed that both AtNRG2.10 and AtNRG2.15 regulated nitrate signalling and metabolism. Overexpression of AtNRG2.11 (AtNRG2) could promote plant growth and improve nitrogen use efficiency (NUE). In addition, the maize genome harbors 23 ZmNRG2 members. We detected the expression of these genes treated with nitrate and the expression of four genes was strongly induced with ZmNRG2.7 having the highest levels. Overexpression of ZmNRG2.7 in the atnrg2 mutant could restore the defects of atnrg2, suggesting that ZmNRG2.7 is involved in nitrate signalling and metabolism. Moreover, the overexpression lines of ZmNRG2.7 showed increased biomass and NUE. These findings demonstrate that at least a part of NRG2 family genes in Arabidopsis and maize regulate nitrate signalling and provide a molecular basis for improving the NUE of crops.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Nitrates/metabolism , Nitrogen/metabolism , Zea mays/metabolism
17.
BMC Gastroenterol ; 24(1): 129, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589828

ABSTRACT

BACKGROUND: The HAP, Six-and-Twelve, Up to Seven, and ALBI scores have been substantiated as reliable prognostic markers in patients presenting with intermediate and advanced hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE) treatment. Given this premise, our research aims to assess the predictive efficacy of these models in patients with intermediate and advanced HCC receiving a combination of TACE and Apatinib. Additionally, we have conducted a meticulous comparative analysis of these four scoring systems to discern their respective predictive capacities and efficacies in combined therapy. METHODS: Performing a retrospective analysis on the clinical data from 200 patients with intermediate and advanced HCC, we studied those who received TACE combined with Apatinib at the First Affiliated Hospital of the University of Science and Technology of China between June 2018 and December 2022. To identify the factors affecting survival, the study performed univariate and multivariate Cox regression analyses, with calculations of four different scores: HAP, Six-and-Twelve, Up to Seven, and ALBI. Lastly, Harrell's C-index was employed to compare the prognostic abilities of these scores. RESULTS: Cox proportional hazards model results revealed that the ALBI score, presence of portal vein tumor thrombus (PVTT, )and tumor size are independent determinants of prognostic survival. The Kaplan-Meier analyses showed significant differences in survival rates among patients classified by the HAP, Six-and-Twelve, Up to Seven, and ALBI scoring methods. Of the evaluated systems, the HAP scoring demonstrated greater prognostic precision, with a Harrell's C-index of 0.742, surpassing the alternative models (P < 0.05). In addition, an analysis of the area under the AU-ROC curve confirms the remarkable superiority of the HAP score in predicting short-term survival outcomes. CONCLUSION: Our study confirms the predictive value of HAP, Six-and-Twelve, Up to Seven, and ALBI scores in intermediate to advanced Hepatocellular Carcinoma (HCC) patients receiving combined Transarterial Chemoembolization (TACE) and Apatinib therapy. Notably, the HAP model excels in predicting outcomes for this specific HCC subgroup.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Pyridines , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Chemoembolization, Therapeutic/methods , Retrospective Studies , Prognosis
18.
J Fluoresc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780833

ABSTRACT

Survival and prognosis of patients with acute myocardial infarction (AMI) are highly dependent on rapid and accurate diagnosis of myocardial damage. Troponin T is the primary diagnostic biomarker and is widely used in clinical practice. Amplified luminescent proximity homogeneous assay (AlphaLISA) may provide a solution to rapidly detect a small amount of analyte through molecular interactions between special luminescent donor beads and acceptor bead. Here, a double-antibody sandwich assay was introduced into AlphaLISA for rapid detection for early diagnosis of AMI and disease staging evaluation. The performance of the assay was evaluated. The study found that the cTnT assay has a linear range of 48.66 to 20,000 ng/L with a limit of detection of 48.66 ng/L. In addition, the assay showed no cross-reactivity with other classic biomarkers of myocardial infarction and was highly reproducible with intra- and inter-batch coefficients of variation of less than 10%, notably, only 3 min was taken, which is particularly suitable for clinical diagnosis. These results suggest that our method can be conveniently applied in the clinic to determine the severity of the patient's condition.

19.
Hepatol Res ; 54(4): 358-367, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37924506

ABSTRACT

AIM: The study aimed to investigate the clinical features, incidence, pathogenesis, and management of liver abscess after drug-eluting bead transarterial chemoembolization (DEB-TACE) for primary and metastatic hepatic malignant tumors. METHODS: From June 2019 to June 2021, patients with liver abscess after DEB-TACE for primary and metastatic hepatic malignant tumors were reviewed and evaluated at our hospital. Demographic and clinical data, radiological findings, management approaches, and prognosis were retrospectively analyzed. RESULTS: In total, 419 DEB-TACE procedures were carried out in 314 patients with primary and metastatic liver tumors at our medical center. Twelve patients were confirmed to have liver abscesses after DEB-TACE through clinical manifestations, laboratory investigations, and imaging. In this study, the incidence of liver abscess was 3.82% per patient and 2.86% per DEB-TACE procedure. After percutaneous drainage and anti-inflammatory treatments, 10 patients recovered, and the remaining 2 patients died due to direct complications of liver abscess, such as sepsis and multiple organ failure. The mortality rate of liver abscesses after DEB-TACE was 16.7% (2/12). CONCLUSION: The incidence of liver abscess after DEB-TACE is relatively high and can have serious consequences, including death. Potential risk factors could include large tumor size, history of bile duct or tumor resection, history of diabetes, small DEB size (100-300 µm). Sensitive antibiotics therapy and percutaneous abscess aspiration/drainage are effective treatments for liver abscess after DEB-TACE.

20.
Int J Med Sci ; 21(12): 2293-2304, 2024.
Article in English | MEDLINE | ID: mdl-39310253

ABSTRACT

Background: The analysis of single-cell transcriptome profiling of tumour tissue isolates helps to identify heterogeneous tumour cells, neighbouring stromal cells and immune cells. Local metastasis of lymph nodes is the most dominant and influential biological behaviors of oral squamous cell carcinoma (OSCC) in terms of treatment prognosis. Understanding metastasis initiation and progression is important for the discovery of new treatments for OSCC and prediction of clinical responses to immunotherapy. However, the identity of metastasis-initiating cells in human OSCC remains elusive, and whether metastases are hierarchically organized is unknown. Therefore, this study was conducted to understand the cellular origins and gene expression signature of OSCC at the single-cell level. Methods: Single-cell RNA sequencing (scRNA-seq) was used to analyze cells from tissue of para-carcinoma (PCA: adjacent normal tissue not less than 2 cm from the tumour), carcinoma (CA), lymph node metastasis (LNM) from patients with OSCC and PCA and CA tissue from patients with second primary OSCC (SPOSCC) after radiotherapy of nasopharyngeal carcinoma (NPC). The cell types and their underlying functions were classified. The comparisons were then conducted between the homology and heterogeneity from cell types and both conservative and heterogeneous aspects of evolution were identified. Immunohistochemistry was performed to verify the makers of cell clusters and the expression level of novel genes. Results: A single-cell transcriptomic map of OSCC was created, including 16 clusters of PCA cells, 17 clusters of CA cells, 14 clusters of left LNM cells, and 14 clusters of right LNM cells. We also discovered two novel types of cells including CD1C-CD141-dendritic cells and CD1C+_B dendritic cells. Most of the non-cancer cells are immune cells, with two distinct clusters of T lymphocytes, B lymphocytes, CD1C-CD141-dendritic cells+ and CD1C+_B dendritic cells. We also classified cells into 15 clusters for SPOSCC after radiotherapy of NPC. Determining the upregulated expression levels of IL1RN and C15orf48 as novel markers using immunohistochemistry facilitated the correct classification of OSCC including SPOSCC after radiotherapy of NPC and the prediction of their prognosis. Conclusions: The findings provided an unprecedented and valuable view of the functional states and heterogeneity of cell populations in LNM of OSCC and SPOSCC after radiotherapy of NPC at single-cell genomic resolution. Moreover, this transcriptomic map discovered new cell types in mouth, and novel tumour cell-specific markers/oncogene.


Subject(s)
Gene Expression Profiling , Mouth Neoplasms , Single-Cell Analysis , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Tumor Microenvironment/immunology , Male , Female , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/immunology
SELECTION OF CITATIONS
SEARCH DETAIL