Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Infect Control ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537678

ABSTRACT

BACKGROUND: Candida auris (C auris) is a fungal pathogen that has the potential for environmental persistence leading to outbreaks in health care settings. There has been a worldwide surge in C auris outbreaks during the COVID-19 pandemic. In this report, we describe an outbreak of C auris, its control, patient outcomes, and lessons learned. METHODS: The outbreak occurred in a 600-bed adult academic tertiary care hospital. Contact tracing was initiated immediately after identification of the index case and surveillance testing for C auris was obtained from patients who were exposed to the index case. Infection prevention measures were closely followed. RESULTS: A total of 560 cultures were performed on 453 unique patients between August 2021 and December 2021. Of those, 31 cultures (5.5%) were positive for C auris; 27 (87.1%) were colonized with C auris, while 4 patients developed a clinical infection (12.9%). The secondary attack rate was 6.8% (31/453). The 30-day all-cause mortality rate for all patients who tested positive for C auris was 9.7%. DISCUSSION: C auris can cause protracted outbreaks that result in colonization and invasive infections. Multidisciplinary work to improve adherence to infection prevention measures as well as targeted admission screening are essential to limit outbreaks.

2.
Bioorg Med Chem Lett ; 23(19): 5361-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23972441

ABSTRACT

A series of novel tri-2,3,5-substituted tetrahydropyran analogs were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the series provided inhibitors with good DPP-4 potency and selectivity over other peptidases (QPP, DPP8, and FAP). Compound 23, which is very potent, selective, efficacious in the diabetes PD model, and has an excellent pharmacokinetic profile, is selected as a clinical candidate.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemical synthesis , Pyrans/chemical synthesis , Animals , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dogs , Enzyme Activation/drug effects , Glucose Tolerance Test , Haplorhini , Humans , Inhibitory Concentration 50 , Pyrans/chemistry , Pyrans/pharmacology , Rats , Stereoisomerism
3.
Bioorg Med Chem ; 20(9): 2845-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22494842

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.


Subject(s)
Benzodiazepines/chemistry , Drug Design , Receptors, Bombesin/agonists , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Animals , Humans , Mice , Protein Binding , Rats , Receptors, Bombesin/metabolism , Stereoisomerism , Sulfonamides/pharmacokinetics , Temperature
4.
J Pharmacol Exp Ther ; 336(2): 356-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21036912

ABSTRACT

Bombesin receptor subtype-3 (BRS-3) is an orphan G protein-coupled receptor implicated in the regulation of energy homeostasis. Here, we report the biologic effects of a highly optimized BRS-3 agonist, (2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol (MK-5046). Single oral doses of MK-5046 inhibited 2-h and overnight food intake and increased fasting metabolic rate in wild-type but not Brs3 knockout mice. Upon dosing for 14 days, MK-5046 at 25 mg · kg(-1) · day(-1) reduced body weight of diet-induced obese mouse by 9% compared with vehicle-dosed controls. In mice, 50% brain receptor occupancy was achieved at a plasma concentration of 0.34 ± 0.23 µM. With chronic dosing, effects on metabolic rate, rather than food intake, seem to be the predominant mechanism for weight reduction by MK-5046. The compound also effectively reduced body weight in rats and caused modest increases in body temperature, heart rate, and blood pressure. These latter effects on temperature, heart rate, and blood pressure were transient in nature and desensitized with continued dosing. MK-5046 is the first BRS-3 agonist with properties suitable for use in larger mammals. In dogs, MK-5046 treatment produced statistically significant and persistent weight loss, which was initially accompanied by increases in body temperature and heart rate that abated with continued dosing. Our results demonstrate antiobesity efficacy for MK-5046 in rodents and dogs and further support BRS-3 agonism as a new approach to the treatment of obesity.


Subject(s)
Anti-Obesity Agents/pharmacology , Imidazoles/pharmacology , Pyrazoles/pharmacology , Receptors, Bombesin/agonists , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Dogs , Dose-Response Relationship, Drug , Eating/drug effects , Energy Metabolism/drug effects , Heart Rate/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptors, Bombesin/analysis
5.
Bioorg Med Chem Lett ; 21(7): 2141-5, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21334894

ABSTRACT

3-(Phenylcyclobutyl)-1,2,4-triazoles were identified as inhibitors of 11ß-Hydroxysteroid Dehydrogenase Type 1 (HSD1). They were shown to be active in the mouse in vivo pharmacodynamic model (PD) for HSD1 but exhibited a potent off-target activation of the Pregnane X Receptor (PXR). SAR studies and synthesis of analogs that led to the discovery of a selective HSD1 inhibitor are described in detail.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Models, Molecular
6.
Bioorg Med Chem Lett ; 21(8): 2568-72, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21421311

ABSTRACT

Following the discovery of a metabolic 'soft-spot' on a bicyclo[2.2.2]octyltriazole lead, an extensive effort was undertaken to block the oxidative metabolism and improve PK of this potent HSD1 lead. In this communication, SAR survey focusing on various alkyl chain replacements will be detailed. This effort culminated in the discovery of a potent ethyl sulfone inhibitor with an improved PK profile across species and improved physical properties.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Bridged Bicyclo Compounds/chemistry , Enzyme Inhibitors/chemistry , Metabolic Syndrome/drug therapy , Triazoles/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Mice , Structure-Activity Relationship , Triazoles/pharmacokinetics , Triazoles/therapeutic use
7.
Patient Exp J ; 8(1): 148-156, 2021.
Article in English | MEDLINE | ID: mdl-35330862

ABSTRACT

Mounting scientific evidence over the past decades in the field of psychiatry has shown community engagement in research produces more relevant research, increased uptake of research findings, and better clinical outcomes. Despite the need for the integration of community engagement methodologies into the scientific method, doctoral and master's level competencies in the field of psychiatry commonly do not include dedicated training or coursework on community engagement methodologies. Without appropriate training or research experience, attempts to facilitate community engagement are often ineffective and burdensome and leave stakeholders feeling disenfranchised. The goal of this study was to co-produce an instrument designed to improve the quality of community engagement research practices by measuring the degree to which researchers have partnered with psychiatric patient stakeholders. The development of the Quality of Patient-Centered Outcomes Research Partnerships Instrument included an iterative co-production process with psychiatric patient stakeholders and scientists, including item formulation, followed by two phases of cognitive interviews with psychiatric patient stakeholders to assess and refine instrument items. A pilot study was conducted to assess acceptability and feasibility. The pilot study of the Patient-Centered Outcomes Research Partnerships Instrument suggested feasibility and acceptability among psychiatric patient stakeholders. The Quality of Patient-Centered Outcomes Research Partnerships Instrument may be a valuable tool to enhance the quality of community engagement research practices within the field of psychiatry.

8.
J Exp Med ; 198(10): 1551-62, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14623909

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4-200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian-human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (>21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.


Subject(s)
Anti-Retroviral Agents/pharmacology , CCR5 Receptor Antagonists , Macaca mulatta/virology , Pyrazoles/pharmacology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Valine/pharmacology , Animals , CD4-Positive T-Lymphocytes/drug effects , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/transmission , Valine/analogs & derivatives
10.
Bioorg Med Chem Lett ; 20(18): 5536-40, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20709552

ABSTRACT

Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. With a goal to develop potent peripherally active sodium channel blockers, a series of low molecular weight biaryl substituted imidazoles, oxazoles, and thiazole carboxamides were identified with good in vitro and in vivo potency.


Subject(s)
Neuralgia/drug therapy , Oxazoles/therapeutic use , Sodium Channel Blockers/therapeutic use , Sodium Channels/metabolism , Thiazoles/therapeutic use , Animals , Dogs , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Microsomes, Liver/metabolism , NAV1.7 Voltage-Gated Sodium Channel , Oxazoles/chemistry , Oxazoles/metabolism , Oxazoles/pharmacology , Rats , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/metabolism , Sodium Channel Blockers/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology
11.
Am J Infect Control ; 47(12): 1505-1507, 2019 12.
Article in English | MEDLINE | ID: mdl-31324493

ABSTRACT

Disinfecting port protectors are a supplement to the central line-associated bloodstream infection prevention bundle as an optional recommendation from the Centers for Disease Control and Prevention. Despite evidence of effectiveness, few centers have successfully reported systematic, sustained implementation of these devices. In this article, we discuss a successful implementation in a large tertiary care teaching hospital, using an evidence-based, multidisciplinary approach. Infection prevention; Bacteremia; Ethanol caps; Bundle measures; Quality improvement; Hub infection.


Subject(s)
Bacteremia/prevention & control , Catheter-Related Infections/prevention & control , Catheters, Indwelling/microbiology , Cross Infection/prevention & control , Equipment Contamination/statistics & numerical data , Bacteremia/diagnosis , Bacteremia/microbiology , Catheter-Related Infections/diagnosis , Catheter-Related Infections/microbiology , Catheterization, Central Venous/instrumentation , Cross Infection/diagnosis , Cross Infection/microbiology , Equipment Contamination/prevention & control , Evidence-Based Medicine , Hospitals, Teaching , Humans , Inpatients , Nurses , Prospective Studies , Quality Control , Tertiary Care Centers
12.
J Med Chem ; 58(3): 1159-83, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25590515

ABSTRACT

We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.


Subject(s)
Enzyme Inhibitors/pharmacology , Huntington Disease/drug therapy , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetulus , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Huntington Disease/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Mice , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
13.
J Med Chem ; 58(7): 2967-87, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25760409

ABSTRACT

Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance. Brain exposure at a level expected to support modulation of a pharmacodynamic marker in mouse was achieved when the compound was coadministered with the pan-cytochrome P450 inhibitor 1-aminobenzotriazole.


Subject(s)
Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Blood-Brain Barrier/drug effects , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Half-Life , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells/drug effects , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
14.
J Huntingtons Dis ; 3(2): 159-74, 2014.
Article in English | MEDLINE | ID: mdl-25062859

ABSTRACT

BACKGROUND: Increasing mutant huntingtin (mHTT) clearance through the autophagy pathway may be a way to treat Huntington's disease (HD). Tools to manipulate and measure autophagy flux in brain in vivo are not well established. OBJECTIVE: To examine the in vivo pharmacokinetics and pharmacodynamics of the lysosomal inhibitor chloroquine (CQ) and the levels of selected autophagy markers to determine usefulness of CQ as a tool to study autophagy flux in brain. METHODS: Intraperitoneal injections of CQ were administered to WT and HD(Q175/Q175) mice. CQ levels were measured by LC-MS/MS in WT brain, muscle and blood at 4 to 24 hours after the last dose. Two methods of tissue preparation were used to detect by Western blot levels of the macroautophagy markers LC3 II and p62, the chaperone mediated autophagy receptor LAMP-2A and the late endosome/lysosomal marker RAB7. RESULTS: Following peripheral administration, CQ levels were highest in muscle and declined rapidly between 4 and 24 hours. In the brain, CQ levels were greater in the cortex than striatum, and levels persisted up to 24 hours post-injection. CQ treatment induced changes in LC3 II and p62 that were variable across regions and tissue preparations. HD(Q175/Q175) mice exposed to CQ had variable but diminished levels of LC3 II, p62 and LAMP-2A, and increased levels of RAB7. Higher levels of mHTT were found in the membrane compartment of CQ treated HD mice. CONCLUSION: Our findings suggest that the response of brain to CQ treatment, a blocker of autophagy flux, is variable and not as robust as it has been demonstrated in vitro, suggesting that CQ treatment has limitations for modulating autophagy flux in vivo. Alternative methods, compounds, and technologies need to be developed to further investigate autophagy flux in vivo, especially in the brain.


Subject(s)
Autophagy/drug effects , Brain/drug effects , Chloroquine/pharmacology , Huntington Disease/drug therapy , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Brain/metabolism , Brain/pathology , Chloroquine/pharmacokinetics , Disease Models, Animal , Gene Knock-In Techniques , Huntingtin Protein , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factor TFIIH , Transcription Factors/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
15.
J Med Chem ; 57(8): 3205-12, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24660890

ABSTRACT

In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Hypoglycemic Agents/pharmacology , Pyrans/pharmacology , Animals , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dipeptidyl-Peptidase IV Inhibitors/toxicity , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/toxicity , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/toxicity , Pyrans/chemical synthesis , Pyrans/pharmacokinetics , Pyrans/toxicity , Structure-Activity Relationship
16.
J Med Chem ; 56(24): 9934-54, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24261862

ABSTRACT

Inhibition of class IIa histone deacetylase (HDAC) enzymes have been suggested as a therapeutic strategy for a number of diseases, including Huntington's disease. Catalytic-site small molecule inhibitors of the class IIa HDAC4, -5, -7, and -9 were developed. These trisubstituted diarylcyclopropanehydroxamic acids were designed to exploit a lower pocket that is characteristic for the class IIa HDACs, not present in other HDAC classes. Selected inhibitors were cocrystallized with the catalytic domain of human HDAC4. We describe the first HDAC4 catalytic domain crystal structure in a "closed-loop" form, which in our view represents the biologically relevant conformation. We have demonstrated that these molecules can differentiate class IIa HDACs from class I and class IIb subtypes. They exhibited pharmacokinetic properties that should enable the assessment of their therapeutic benefit in both peripheral and CNS disorders. These selective inhibitors provide a means for evaluating potential efficacy in preclinical models in vivo.


Subject(s)
Drug Design , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Huntington Disease/drug therapy , Animals , Dose-Response Relationship, Drug , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylases/classification , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Structure-Activity Relationship
17.
ACS Med Chem Lett ; 3(3): 252-6, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900461

ABSTRACT

Extensive structure-activity relationship studies of a series derived from atropisomer 1, a previously described chiral benzodiazepine sulfonamide series, led to a potent, brain penetrant and selective compound with excellent preclinical pharmacokinetic across species. We also describe the utilization of a high throughput mouse pharmacodynamic assay which allowed for expedient assessment of pharmacokinetic and brain distribution.

18.
ACS Med Chem Lett ; 2(12): 933-7, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900283

ABSTRACT

We report herein the discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 (BRS-3) agonists and their unusual chirality. Starting from a high-throughput screening lead, we prepared a series of BRS-3 agonists with improved potency and pharmacokinetic properties, of which compound 8a caused mechanism-based, dose-dependent food intake reduction and body weight loss after oral dosing in diet-induced obese mice. This effort also led to the discovery of a novel family of chiral molecules originated from the conformationally constrained seven-membered diazepine ring.

19.
Bioorg Med Chem Lett ; 17(7): 1903-7, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17291750

ABSTRACT

Following the discovery of N-acyl-1,4-diazepan-2-one as a novel pharmacophore for potent and selective DPP-4 inhibitors, optimization of this new lead with different substitution on the seven-membered ring resulted in several highly potent and selective, orally bioavailable, and efficacious DPP-4 inhibitors, such as 3R-methyl-1-cyclopropyl-1,4-diazepan-2-one derivative 9i (DPP-4 IC(50)=8.0 nM) and 3R,6R-dimethyl-1,4-diazepan-2-one derivative 14a (DPP-4 IC(50)=9.7 nM).


Subject(s)
Azepines/chemical synthesis , Chemistry, Pharmaceutical/methods , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Administration, Oral , Animals , Azepines/pharmacology , Drug Design , Inhibitory Concentration 50 , Male , Mice , Models, Chemical , Molecular Conformation , Rats , Rats, Sprague-Dawley
20.
Bioorg Med Chem Lett ; 17(12): 3384-7, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17433672

ABSTRACT

Molecular modeling was used to design a rigid analog of sitagliptin 1. The X-ray crystal structure of sitagliptin bound to DPP-4 suggested that the central beta-amino butyl amide moiety could be replaced with a cyclohexylamine group. This was confirmed by structural analysis and the resulting analog 2a was synthesized and found to be a potent DPP-4 inhibitor (IC(50)=21 nM) with excellent in vivo activity and pharmacokinetic profile.


Subject(s)
Adenosine Deaminase Inhibitors , Cyclohexylamines/chemistry , Dipeptidyl-Peptidase IV Inhibitors , Glycoproteins/antagonists & inhibitors , HIV Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Triazoles/pharmacology , Administration, Oral , Binding Sites , Crystallography, X-Ray , Dipeptidyl Peptidase 4 , Drug Design , HIV Protease Inhibitors/chemical synthesis , Humans , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Pyrazines/chemistry , Sitagliptin Phosphate , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL