Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36586412

ABSTRACT

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Subject(s)
Intellectual Disability , Nervous System Malformations , Neurodevelopmental Disorders , Humans , Male , Female , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , Gene Expression Regulation , Face , Nuclear Proteins/genetics , Histone Demethylases/genetics
2.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
3.
Hum Mol Genet ; 32(5): 732-744, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36067040

ABSTRACT

Mono- and bi-allelic variants in ALDH18A1 cause a spectrum of human disorders associated with cutaneous and neurological findings that overlap with both cutis laxa and spastic paraplegia. ALDH18A1 encodes the bifunctional enzyme pyrroline-5-carboxylate synthetase (P5CS) that plays a role in the de novo biosynthesis of proline and ornithine. Here we characterize a previously unreported homozygous ALDH18A1 variant (p.Thr331Pro) in four affected probands from two unrelated families, and demonstrate broad-based alterations in amino acid and antioxidant metabolism. These four patients exhibit variable developmental delay, neurological deficits and loose skin. Functional characterization of the p.Thr331Pro variant demonstrated a lack of any impact on the steady-state level of the P5CS monomer or mitochondrial localization of the enzyme, but reduced incorporation of the monomer into P5CS oligomers. Using an unlabeled NMR-based metabolomics approach in patient fibroblasts and ALDH18A1-null human embryonic kidney cells expressing the variant P5CS, we identified reduced abundance of glutamate and several metabolites derived from glutamate, including proline and glutathione. Biosynthesis of the polyamine putrescine, derived from ornithine, was also decreased in patient fibroblasts, highlighting the functional consequence on another metabolic pathway involved in antioxidant responses in the cell. RNA sequencing of patient fibroblasts revealed transcript abundance changes in several metabolic and extracellular matrix-related genes, adding further insight into pathogenic processes associated with impaired P5CS function. Together these findings shed new light on amino acid and antioxidant pathways associated with ALDH18A1-related disorders, and underscore the value of metabolomic and transcriptomic profiling to discover new pathways that impact disease pathogenesis.


Subject(s)
Amino Acids , Cutis Laxa , Humans , Antioxidants , Proline/metabolism , Glutamic Acid/metabolism , Cutis Laxa/complications , Cutis Laxa/genetics , Cutis Laxa/pathology , Ornithine
4.
Age Ageing ; 53(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38454901

ABSTRACT

BACKGROUND: The study explores whether frailty at midlife predicts mortality and levels of biomarkers associated with Alzheimer's disease and related dementias (ADRD) and neurodegeneration by early old age. We also examine the heritability of frailty across this age period. METHODS: Participants were 1,286 community-dwelling men from the Vietnam Era Twin Study of Aging at average ages 56, 62 and 68, all without ADRD at baseline. The cumulative deficit frailty index (FI) comprised 37 items assessing multiple physiological systems. Plasma biomarkers at age 68 included beta-amyloid (Aß40, Aß42), total tau (t-tau) and neurofilament light chain (NfL). RESULTS: Being frail doubled the risk of all-cause mortality by age 68 (OR = 2.44). Age 56 FI significantly predicted age 68 NfL (P = 0.014), Aß40 (P = 0.001) and Aß42 (P = 0.023), but not t-tau. Age 62 FI predicted all biomarkers at age 68: NfL (P = 0.023), Aß40 (P = 0.002), Aß42 (P = 0.001) and t-tau (P = 0.001). Age 68 FI scores were associated with age 68 levels of NfL (P = 0.027), Aß40 (P < 0.001), Aß42 (P = 0.001) and t-tau (P = 0.003). Genetic influences accounted for 45-48% of the variance in frailty and significantly contributed to its stability across 11 years. CONCLUSIONS: Frailty during one's 50s doubled the risk of mortality by age 68. A mechanism linking frailty and ADRD may be through its associations with biomarkers related to neurodegeneration. Cumulative deficit frailty increases with age but remains moderately heritable across the age range studied. With environmental factors accounting for about half of its variance, early interventions aimed at reducing frailty may help to reduce risk for ADRD.


Subject(s)
Alzheimer Disease , Frailty , Male , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Frailty/diagnosis , Amyloid beta-Peptides , Biomarkers
5.
Prenat Diagn ; 44(2): 237-246, 2024 02.
Article in English | MEDLINE | ID: mdl-37632214

ABSTRACT

OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.


Subject(s)
Kidney Diseases, Cystic , Kidney Diseases , Urogenital Abnormalities , Vesico-Ureteral Reflux , Pregnancy , Female , Humans , Chromosome Deletion , Kidney/diagnostic imaging , Kidney/abnormalities , Kidney Diseases/congenital , Phenotype , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Multicenter Studies as Topic
6.
Alzheimers Dement ; 20(1): 356-365, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37622539

ABSTRACT

INTRODUCTION: Despite their increased application, the heritability of Alzheimer's disease (AD)-related blood-based biomarkers remains unexplored. METHODS: Plasma amyloid beta 40 (Aß40), Aß42, the Aß42/40 ratio, total tau (t-tau), and neurofilament light (NfL) data came from 1035 men 60 to 73 years of age (µ = 67.0, SD = 2.6). Twin models were used to calculate heritability and the genetic and environmental correlations between them. RESULTS: Additive genetics explained 44% to 52% of Aß42, Aß40, t-tau, and NfL. The Aß42/40 ratio was not heritable. Aß40 and Aß42 were genetically near identical (rg  = 0.94). Both Aß40 and Aß42 were genetically correlated with NfL (rg  = 0.35 to 0.38), but genetically unrelated to t-tau. DISCUSSION: Except for Aß42/40, plasma biomarkers are heritable. Aß40 and Aß42 share mostly the same genetic influences, whereas genetic influences on plasma t-tau and NfL are largely unique in early old-age men. The absence of genetic associations between the Aßs and t-tau is not consistent with the amyloid cascade hypothesis.


Subject(s)
Alzheimer Disease , Male , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides , tau Proteins/genetics , Biomarkers , Peptide Fragments
7.
Article in English | MEDLINE | ID: mdl-39126209

ABSTRACT

Multivariate network-based analytic methods such as weighted gene co-expression network analysis are frequently applied to human and animal gene-expression data to estimate the first principal component of a module, or module eigengene (ME). MEs are interpreted as multivariate summaries of correlated gene-expression patterns and network connectivity across genes within a module. As such, they have the potential to elucidate the mechanisms by which molecular genomic variation contributes to individual differences in complex traits. Although increasingly used to test for associations between modules and complex traits, the genetic and environmental etiology of MEs has not been empirically established. It is unclear if, and to what degree, individual differences in blood-derived MEs reflect random variation versus familial aggregation arising from heritable or shared environmental influences. We used biometrical genetic analyses to estimate the contribution of genetic and environmental influences on MEs derived from blood lymphocytes collected on a sample of N = 661 older male twins from the Vietnam Era Twin Study of Aging (VETSA) whose mean age at assessment was 67.7 years (SD = 2.6 years, range = 62-74 years). Of the 26 detected MEs, 14 (56%) had statistically significant additive genetic variation with an average heritability of 44% (SD = 0.08, range = 35%-64%). Despite the relatively small sample size, this demonstration of significant family aggregation including estimates of heritability in 14 of the 26 MEs suggests that blood-based MEs are reliable and merit further exploration in terms of their associations with complex traits and diseases.

8.
Genet Med ; 25(1): 63-75, 2023 01.
Article in English | MEDLINE | ID: mdl-36399132

ABSTRACT

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Genome
9.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Article in English | MEDLINE | ID: mdl-37183572

ABSTRACT

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Child , Female , Humans , Infant , Male , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2C/genetics , Retrospective Studies , Vomiting , Child, Preschool , Adolescent , Young Adult , Middle Aged
10.
J Int Neuropsychol Soc ; 29(8): 763-774, 2023 10.
Article in English | MEDLINE | ID: mdl-36524301

ABSTRACT

OBJECTIVES: Abnormal tau, a hallmark Alzheimer's disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations. METHODS: We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation. RESULTS: For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains. CONCLUSIONS: Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Aged , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Alzheimer Disease/diagnosis , Cognition , Aging
11.
J Int Neuropsychol Soc ; 29(2): 136-147, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35184795

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is highly heritable, and AD polygenic risk scores (AD-PRSs) have been derived from genome-wide association studies. However, the nature of genetic influences very early in the disease process is still not well known. Here we tested the hypothesis that an AD-PRSs would be associated with changes in episodic memory and executive function across late midlife in men who were cognitively unimpaired at their baseline midlife assessment.. METHOD: We examined 1168 men in the Vietnam Era Twin Study of Aging (VETSA) who were cognitively normal (CN) at their first of up to three assessments across 12 years (mean ages 56, 62, and 68). Latent growth models of episodic memory and executive function were based on 6-7 tests/subtests. AD-PRSs were based on Kunkle et al. (Nature Genetics, 51, 414-430, 2019), p < 5×10-8 threshold. RESULTS: AD-PRSs were correlated with linear slopes of change for both cognitive abilities. Men with higher AD-PRSs had steeper declines in both memory (r = -.19, 95% CI [-.35, -.03]) and executive functioning (r = -.27, 95% CI [-.49, -.05]). Associations appeared driven by a combination of APOE and non-APOE genetic influences. CONCLUSIONS: Memory is most characteristically impaired in AD, but executive functions are one of the first cognitive abilities to decline in midlife in normal aging. This study is among the first to demonstrate that this early decline also relates to AD genetic influences, even in men CN at baseline.


Subject(s)
Alzheimer Disease , Memory, Episodic , Humans , Male , Middle Aged , Alzheimer Disease/complications , Apolipoprotein E4/genetics , Cognition , Executive Function , Genome-Wide Association Study , Aged
12.
J Int Neuropsychol Soc ; 29(3): 235-245, 2023 03.
Article in English | MEDLINE | ID: mdl-35465863

ABSTRACT

OBJECTIVE: To determine associations of alcohol use with cognitive aging among middle-aged men. METHOD: 1,608 male twins (mean 57 years at baseline) participated in up to three visits over 12 years, from 2003-2007 to 2016-2019. Participants were classified into six groups based on current and past self-reported alcohol use: lifetime abstainers, former drinkers, very light (1-4 drinks in past 14 days), light (5-14 drinks), moderate (15-28 drinks), and at-risk drinkers (>28 drinks in past 14 days). Linear mixed-effects regressions modeled cognitive trajectories by alcohol group, with time-based models evaluating rate of decline as a function of baseline alcohol use, and age-based models evaluating age-related differences in performance by current alcohol use. Analyses used standardized cognitive domain factor scores and adjusted for sociodemographic and health-related factors. RESULTS: Performance decreased over time in all domains. Relative to very light drinkers, former drinkers showed worse verbal fluency performance, by -0.21 SD (95% CI -0.35, -0.07), and at-risk drinkers showed faster working memory decline, by 0.14 SD (95% CI 0.02, -0.20) per decade. There was no evidence of protective associations of light/moderate drinking on rate of decline. In age-based models, light drinkers displayed better memory performance at advanced ages than very light drinkers (+0.14 SD; 95% CI 0.02, 0.20 per 10-years older age); likely attributable to residual confounding or reverse association. CONCLUSIONS: Alcohol consumption showed minimal associations with cognitive aging among middle-aged men. Stronger associations of alcohol with cognitive aging may become apparent at older ages, when cognitive abilities decline more rapidly.


Subject(s)
Cognitive Aging , Middle Aged , Humans , Male , Vietnam , Aging/psychology , Alcohol Drinking/psychology , Cognition
13.
Cereb Cortex ; 32(19): 4191-4203, 2022 09 19.
Article in English | MEDLINE | ID: mdl-34969072

ABSTRACT

The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.


Subject(s)
Gray Matter , Locus Coeruleus , Aged , Gray Matter/diagnostic imaging , Humans , Locus Coeruleus/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Norepinephrine , Water
14.
Alzheimers Dement ; 19(10): 4357-4366, 2023 10.
Article in English | MEDLINE | ID: mdl-37394941

ABSTRACT

INTRODUCTION: Long-term blood pressure (BP) measures, such as visit-to-visit BP variability (BPV) and cumulative BP, are strong indicators of cardiovascular risks. This study modeled up to 20 years of BP patterns representative of midlife by using BPV and cumulative BP, then examined their associations with development of dementia in later life. METHODS: For 3201 individuals from the Framingham Heart Study, multivariate logistic regression analyses were performed to examine the association between long-term BP patterns during midlife and the development of dementia (ages ≥ 65). RESULTS: After adjusting for covariates, every quartile increase in midlife cumulative BP was associated with a sequential increase in the risk of developing dementia (e.g., highest quartile of cumulative systolic blood pressure had approximately 2.5-fold increased risk of all-cause dementia). BPV was not significantly associated with dementia. DISCUSSION: Findings suggest that cumulative BP over the course of midlife predicts risk of dementia in later life. HIGHLIGHTS Long-term blood pressure (BP) patterns are strong indicators of vascular risks. Cumulative BP and BP variability (BPV) were used to reflect BP patterns across midlife. High cumulative BP in midlife is associated with increased dementia risk. Visit-to-visit BPV was not associated with the onset of dementia.


Subject(s)
Dementia , Hypertension , Humans , Blood Pressure/physiology , Risk Factors , Hypertension/epidemiology , Hypertension/complications , Longitudinal Studies , Dementia/epidemiology , Dementia/complications
15.
Psychol Med ; 52(14): 3007-3017, 2022 10.
Article in English | MEDLINE | ID: mdl-33431106

ABSTRACT

BACKGROUND: Clarifying the relationship between depression symptoms and cardiometabolic and related health could clarify risk factors and treatment targets. The objective of this study was to assess whether depression symptoms in midlife are associated with the subsequent onset of cardiometabolic health problems. METHODS: The study sample comprised 787 male twin veterans with polygenic risk score data who participated in the Harvard Twin Study of Substance Abuse ('baseline') and the longitudinal Vietnam Era Twin Study of Aging ('follow-up'). Depression symptoms were assessed at baseline [mean age 41.42 years (s.d. = 2.34)] using the Diagnostic Interview Schedule, Version III, Revised. The onset of eight cardiometabolic conditions (atrial fibrillation, diabetes, erectile dysfunction, hypercholesterolemia, hypertension, myocardial infarction, sleep apnea, and stroke) was assessed via self-reported doctor diagnosis at follow-up [mean age 67.59 years (s.d. = 2.41)]. RESULTS: Total depression symptoms were longitudinally associated with incident diabetes (OR 1.29, 95% CI 1.07-1.57), erectile dysfunction (OR 1.32, 95% CI 1.10-1.59), hypercholesterolemia (OR 1.26, 95% CI 1.04-1.53), and sleep apnea (OR 1.40, 95% CI 1.13-1.74) over 27 years after controlling for age, alcohol consumption, smoking, body mass index, C-reactive protein, and polygenic risk for specific health conditions. In sensitivity analyses that excluded somatic depression symptoms, only the association with sleep apnea remained significant (OR 1.32, 95% CI 1.09-1.60). CONCLUSIONS: A history of depression symptoms by early midlife is associated with an elevated risk for subsequent development of several self-reported health conditions. When isolated, non-somatic depression symptoms are associated with incident self-reported sleep apnea. Depression symptom history may be a predictor or marker of cardiometabolic risk over decades.


Subject(s)
Erectile Dysfunction , Hypercholesterolemia , Hypertension , Sleep Apnea Syndromes , Humans , Male , Adult , Aged , Longitudinal Studies , Depression/epidemiology , Risk Factors
16.
Am J Med Genet A ; 188(5): 1572-1577, 2022 05.
Article in English | MEDLINE | ID: mdl-35098650

ABSTRACT

Chromosomal aneuploidies, microduplications and microdeletions are the most common confirmed genetic causes of spina bifida. Microduplications of Xq27 containing the SOX3 gene have been reported in 11 cases, confirming the existence of an X-chromosomal locus for spina bifida. A three generation kindred reported here with a SOX3 duplication has been identified in one of 17 kindreds with recurrences in the 29 years of the South Carolina Neural Tube Defect Prevention Program. Other recurrences during this time period included siblings with an APAF1 mutation, siblings with a CASP9 mutation, siblings with a microdeletion of 13q, and two sets of siblings with Meckel syndrome who did not have genetic/genomic studies performed.


Subject(s)
Neural Tube Defects , Spinal Dysraphism , Encephalocele , Humans , Mutation , Neural Tube Defects/genetics , Recurrence , SOXB1 Transcription Factors/genetics , Spinal Dysraphism/genetics
17.
Am J Med Genet A ; 188(7): 2237-2241, 2022 07.
Article in English | MEDLINE | ID: mdl-35426477

ABSTRACT

Loeys-Dietz syndrome (LDS) is a connective tissue disorder that commonly results in a dilated aorta, aneurysms, joint laxity, craniosynostosis, and soft skin that bruises easily. Neurodevelopmental abnormalities are uncommon in LDS. Two previous reports present a total of four patients with LDS due to pure 1q41 deletions involving TGFB2 (Gaspar et al., American Journal of Medical Genetics Part A, 2017, 173, 2289-2292; Lindsay et al., Nature Genetics, 2012, 44, 922-927). The current report describes an additional five patients with similar deletions. Seven of the nine patients present with some degree of hypotonia and gross motor delay, and three of the nine present with speech delay and/or intellectual disability (ID). The smallest deletion common to all patients is a 785 kb locus that contains two genes: RRP15 and TGFB2. Previous studies report that TGFB2 knockout mice exhibit severe perinatal anomalies (Sanford et al., Development, 1997, 124, 2659-2670) and TGFB2 is expressed in the embryonic mouse hindbrain floor (Chleilat et al., Frontiers in Cellular Neuroscience, 2019, 13). The deletion of TGFB2 may be associated with a neurodevelopmental phenotype with incomplete penetrance and variable expression.


Subject(s)
Connective Tissue Diseases , Language Development Disorders , Loeys-Dietz Syndrome , Animals , Humans , Loeys-Dietz Syndrome/diagnosis , Loeys-Dietz Syndrome/genetics , Mice , Phenotype , Transforming Growth Factor beta2/genetics
18.
Proc Natl Acad Sci U S A ; 116(6): 2021-2026, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30670647

ABSTRACT

How and when education improves cognitive capacity is an issue of profound societal importance. Education and later-life education-related factors, such as occupational complexity and engagement in cognitive-intellectual activities, are frequently considered indices of cognitive reserve, but whether their effects are truly causal remains unclear. In this study, after accounting for general cognitive ability (GCA) at an average age of 20 y, additional education, occupational complexity, or engagement in cognitive-intellectual activities accounted for little variance in late midlife cognitive functioning in men age 56-66 (n = 1009). Age 20 GCA accounted for 40% of variance in the same measure in late midlife and approximately 10% of variance in each of seven cognitive domains. The other factors each accounted for <1% of the variance in cognitive outcomes. The impact of these other factors likely reflects reverse causation-namely, downstream effects of early adult GCA. Supporting that idea, age 20 GCA, but not education, was associated with late midlife cortical surface area (n = 367). In our view, the most parsimonious explanation of our results, a meta-analysis of the impact of education, and epidemiologic studies of the Flynn effect is that intellectual capacity gains due to education plateau in late adolescence/early adulthood. Longitudinal studies with multiple cognitive assessments before completion of education would be needed to confirm this speculation. If cognitive gains reach an asymptote by early adulthood, then strengthening cognitive reserve and reducing later-life cognitive decline and dementia risk may really begin with improving educational quality and access in childhood and adolescence.


Subject(s)
Cognition/physiology , Education , Adolescent , Aged , Cognition Disorders , Cognitive Dysfunction , Cognitive Reserve , Dementia , Humans , Life Style , Longitudinal Studies , Male , Middle Aged , Young Adult
19.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33944996

ABSTRACT

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Subject(s)
DNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Catalytic Domain , Child , Child, Preschool , Cohort Studies , Epilepsy/genetics , Female , Genes, Dominant , Humans , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/physiopathology , Pedigree , Young Adult
20.
Genet Med ; 23(7): 1305-1314, 2021 07.
Article in English | MEDLINE | ID: mdl-33731878

ABSTRACT

PURPOSE: Variants in NUS1 are associated with a congenital disorder of glycosylation, developmental and epileptic encephalopathies, and are possible contributors to Parkinson disease pathogenesis. How the diverse functions of the NUS1-encoded Nogo B receptor (NgBR) relate to these different phenotypes is largely unknown. We present three patients with de novo heterozygous variants in NUS1 that cause a complex movement disorder, define pathogenic mechanisms in cells and zebrafish, and identify possible therapy. METHODS: Comprehensive functional studies were performed using patient fibroblasts, and a zebrafish model mimicking NUS1 haploinsufficiency. RESULTS: We show that de novo NUS1 variants reduce NgBR and Niemann-Pick type C2 (NPC2) protein amount, impair dolichol biosynthesis, and cause lysosomal cholesterol accumulation. Reducing nus1 expression 50% in zebrafish embryos causes abnormal swim behaviors, cholesterol accumulation in the nervous system, and impaired turnover of lysosomal membrane proteins. Reduction of cholesterol buildup with 2-hydroxypropyl-ß-cyclodextrin significantly alleviates lysosomal proteolysis and motility defects. CONCLUSION: Our results demonstrate that these NUS1 variants cause multiple lysosomal phenotypes in cells. We show that the movement deficits associated with nus1 reduction in zebrafish arise in part from defective efflux of cholesterol from lysosomes, suggesting that treatments targeting cholesterol accumulation could be therapeutic.


Subject(s)
Haploinsufficiency , Niemann-Pick Disease, Type C , Animals , Cell Line , Cholesterol , Haploinsufficiency/genetics , Humans , Lysosomes , Phenotype , Receptors, Cell Surface/genetics , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL