Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Nano Lett ; 24(6): 2087-2093, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38314714

ABSTRACT

The exceptional point (EP) is the critical phase transition point in parity-time (PT) symmetry systems, offering many unique physical phenomena, such as a chiral response. Achieving chiral EP in practical applications has been challenging due to the delicate balance required between gain and loss and complicated fabrication, limiting both working band and device miniaturization. Here, we proposed a nonlocal metasurface featuring orthogonal gold nanorods, where loss modulation is achieved through rod size and lattice pitch. By tuning the coupling strength, we experimentally observed the PT symmetry phase transition and chiral EP in the telecom-band. The experimental and simulated circular conversion dichroism at EP reach 0.79 and 0.99, respectively. We also demonstrated an abrupt phase flip of a specific component near EP theoretically. This work provides a feasible scheme for exploring EP in polarized space within the telecom-band, which may find applications in polarization control, wavelength division multiplexing, ultrasensitive sensing, imaging, etc.

2.
Opt Express ; 31(9): 14986-14996, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157350

ABSTRACT

Gain and loss balanced parity-time (PT) inversion symmetry has been achieved across multiple platforms including acoustics, electronics, and photonics. Tunable subwavelength asymmetric transmission based on PT symmetry breaking has attracted great interest. However, due to the diffraction limit, the geometric size of an optical PT symmetric system is much larger than the resonant wavelength, which limits the device miniaturization. Here, we theoretically studied a subwavelength optical PT symmetry breaking nanocircuit based on the similarity between a plasmonic system and an RLC circuit. Firstly, the asymmetric coupling of an input signal is observed by varying the coupling strength and gain-loss ratio between the nanocircuits. Furthermore, a subwavelength modulator is proposed by modulating the gain of the amplified nanocircuit. Notably, the modulation effect near the exceptional point is remarkable. Finally, we introduce a four-level atomic model modified by the Pauli exclusion principle to simulate the nonlinear dynamics of a PT symmetry broken laser. The asymmetric emission of a coherent laser is realized by full-wave simulation with a contrast of about 50. This subwavelength optical nanocircuit with broken PT symmetry is of great significance for realizing directional guided light, modulator and asymmetric-emission laser at subwavelength scales.

SELECTION OF CITATIONS
SEARCH DETAIL