Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38662948

ABSTRACT

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Subject(s)
Fluorescent Dyes , Foam Cells , Lipid Droplets , Fluorescent Dyes/chemistry , Foam Cells/metabolism , Foam Cells/pathology , Animals , Mice , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Lysosomes/metabolism , Atherosclerosis/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Optical Imaging , Humans , RAW 264.7 Cells , Hydrogen-Ion Concentration , Color
2.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38305871

ABSTRACT

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Subject(s)
Biosensing Techniques , Nucleic Acids , CRISPR-Cas Systems/genetics , Survivin/genetics , Biomarkers , Point-of-Care Testing
3.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814990

ABSTRACT

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/metabolism , Apoptosis , Gliosis/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Spinal Cord/metabolism
4.
Anal Chem ; 95(46): 16976-16986, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37943785

ABSTRACT

Carboxylic acids are central metabolites in bioenergetics, signal transduction, and post-translation protein regulation. However, the quantitative analysis of carboxylic acids as an indispensable part of metabolomics is prohibitively challenging, particularly in trace amounts of biosamples. Here we report a diazo-carboxyl/hydroxylamine-ketone double click derivatization method for the sensitive analysis of hydrophilic, low-molecular-weight carboxylic acids. In general, our method renders a 5- to 2000-fold higher response in mass spectrometry along with improved chromatographic separation. With this method, we presented the near-single-cell analysis of carboxylic acid metabolites in 10 mouse egg cells before and after fertilization. Malate, fumarate, and ß-hydroxybutyrate were found to decrease after fertilization. We also monitored the isotope labeling kinetics of carboxylic acids inside adherent cells cultured in 96-well plates during drug treatment. Finally, we applied this method to plasma or serum samples (5 µL) collected from mice and humans under pathological and physiological conditions. The double click derivatization method paves a way toward single-cell metabolomics and bedside diagnostics.


Subject(s)
Carboxylic Acids , Tandem Mass Spectrometry , Humans , Animals , Mice , Carboxylic Acids/chemistry , Tandem Mass Spectrometry/methods , Metabolomics/methods , Isotope Labeling/methods
5.
Plant Cell ; 32(6): 1905-1918, 2020 06.
Article in English | MEDLINE | ID: mdl-32303659

ABSTRACT

Regulation of grain size is crucial for improving crop yield and is also a basic aspect in developmental biology. However, the genetic and molecular mechanisms underlying grain size control in crops remain largely unknown despite their central importance. Here, we report that the MEI2-LIKE PROTEIN4 (OML4) encoded by the LARGE1 gene is phosphorylated by GLYCOGEN SYNTHASE KINASE2 (GSK2) and negatively controls grain size and weight in rice (Oryza sativa). Loss of function of OML4 leads to large and heavy grains, while overexpression of OML4 causes small and light grains. OML4 regulates grain size by restricting cell expansion in the spikelet hull. OML4 is expressed in developing panicles and grains, and the GFP-OML4 fusion protein is localized in the nuclei. Biochemical analyses show that the GSK2 physically interacts with OML4 and phosphorylates it, thereby possibly influencing the stability of OML4. Genetic analyses support that GSK2 and OML4 act, at least in part, in a common pathway to control grain size in rice. These results reveal the genetic and molecular mechanism of a GSK2-OML4 regulatory module in grain size control, suggesting that this pathway is a suitable target for improving seed size and weight in crops.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Phosphorylation/genetics , Phosphorylation/physiology , Plant Proteins/genetics
6.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569742

ABSTRACT

Atopic dermatitis (AD) is a common skin disease worldwide. The major causes of AD are skin barrier defects, immune dysfunction, and oxidative stress. In this study, we investigated the anti-oxidation and anti-inflammation effects of Coffea arabica extract (CAE) and its regulation of the skin barrier and immune functions in AD. In vitro experiments revealed that CAE decreased the reactive oxygen species levels and inhibited the translocation of nuclear factor-κB (NF-κB), further reducing the secretion of interleukin (IL)-1ß and IL-6 induced by interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α). Moreover, CAE decreased IFN-γ/TNF-α-induced NLR family pyrin domain-containing 3 (NLRP3), caspase-1, high-mobility group box 1 (HMGB1), and receptor for advanced glycation end products (RAGE) expression levels. It also restored the protein levels of skin barrier function-related markers including filaggrin and claudin-1. In vivo experiments revealed that CAE not only reduced the redness of the backs of mice caused by 2,4-dinitrochlorobenzene (DNCB) but also reduced the levels of pro-inflammatory factors in their skin. CAE also reduced transepidermal water loss (TEWL) and immune cell infiltration in DNCB-treated mice. Overall, CAE exerted anti-oxidation and anti-inflammation effects and ameliorated skin barrier dysfunction, suggesting its potential as an active ingredient for AD treatment.


Subject(s)
Coffea , Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha/pharmacology , Dinitrochlorobenzene/adverse effects , Skin/pathology , Antioxidants/pharmacology , Cytokines , Mice, Inbred BALB C
7.
Clin Exp Nephrol ; 26(3): 216-225, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34665348

ABSTRACT

BACKGROUND: Low-vacuum scanning electron microscopy (LV-SEM) is applied to diagnostic renal pathology. METHODS: To demonstrate the usefulness of LV-SEM and to clarify the optimal conditions of pathology samples, we investigated the alterations of glomerular basement membrane (GBM) and podocytes in control and experimental active Heymann nephritis (AHN) rats by LV-SEM. RESULTS: On week 15 following induction of AHN, spike formation on GBM with diffuse deposition of IgG and C3 developed. Using LV-SEM, diffuse crater-like protrusions were clearly noted three-dimensionally (3D) on surface of GBM in the same specimens of light microscopy (LM) and immunofluorescence (IF) studies only after removal coverslips or further adding periodic acid-silver methenamine (PAM) staining. These 3D ultrastructural findings of GBM surface could be detected in PAM-stained specimens by LV-SEM, although true GBM surface findings could not be obtained in acellular glomeruli, because some subepithelial deposits remained on surface of GBM. Adequate thickness was 1.5-5 µm for 10% formalin-fixed paraffin-embedded (FFPE) and 5-10 µm for the unfixed frozen sections. The foot processes and their effacement of podocytes could be observed by LV-SEM using 10%FFPE specimens with platinum blue (Pt-blue) staining or double staining of PAM and Pt-blue. These findings were obtained more large areas in 2.5% glutaraldehyde-fixed paraffin-embedded (2.5%GFPE) specimens. CONCLUSION: Our findings suggest that LV-SEM is a useful assessment tool for evaluating the alterations of GBM and podocytes in renal pathology using routine LM and IF specimens, as well as 2.5%GFPE specimens.


Subject(s)
Glomerular Basement Membrane , Podocytes , Animals , Glomerular Basement Membrane/pathology , Humans , Kidney/ultrastructure , Microscopy, Electron, Scanning , Podocytes/pathology , Rats , Vacuum
8.
Ecotoxicol Environ Saf ; 232: 113230, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35121254

ABSTRACT

Pymetrozine has replaced toxic organophosphate pesticides previously used for controlling pests of rice crops in China. Existing data on its environmental behavior are usually related to studies on artificial plots that do not adequately address the natural dynamics and residues in actual field conditions. Therefore, studies under field conditions were carried out to investigate the natural dynamics and residues of pymetrozine in two typical rice-growing areas in China - Hunan and Guangxi provinces. Samples of paddy soil and water were collected in relation to spraying events in the study areas. The quick, easy, cheap, effective, rugged and safe (QuEChERS) method was used to extract pymetrozine residues from the samples by a Waters ACQUITY UPLC (Milford, MA, USA) system interfaced with a triple-quadrupole mass spectrometer (Xevo TQ-D, Waters Corp., USA). The initial deposition of pymetrozine in paddy soils was higher than in paddy waters in both areas. The decay of pymetrozine followed an exponential trend consistent with the first order kinetics. The half-life of pymetrozine in paddy water was determined to be 3.0 and 3.8 days, whereas the half-life in soil was 3.8 and 3.5 days in the Guangxi and Hunan samples, respectively. The decline rates of pymetrozine in paddy soil and paddy water in this field study were faster than those conducted under non-field conditions reported in previous studies. Compared to other pesticides used in China as reported in previous studies, the environmental persistence of pymetrozine in both paddy water and soils in Guangxi and Hunan provinces is very low. This has important implications for the use of pymetrozine in agricultural systems globally.


Subject(s)
Oryza , Soil Pollutants , China , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis , Triazines/analysis
9.
Molecules ; 27(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35408731

ABSTRACT

Skin aging is a complex process involving photoaging and glycation stress, which share some fundamental pathways and have common mediators. They can cause skin damage and collagen degradation by inducing oxidative stress and the accumulation of reactive oxygen species (ROS). Chenopodium formosanum (CF), also known as Djulis, is a traditional cereal in Taiwan. This study investigated the protection mechanisms of CF extract against ultraviolet (UV) radiation and advanced glycation end products (AGEs)-induced stress. The results indicated that CF extract had strong antioxidant and free radical scavenging effects. It could reduce UV-induced intracellular ROS generation and initiate the antioxidant defense system by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in human skin fibroblasts. CF extract modulated mitogen-activated protein kinase (MAPK) and transformed growth factor-beta (TGF-ß) signaling pathways to alleviate oxidative stress-induced skin aging. Moreover, the results revealed that CF extract not only promoted collagen synthesis but also improved aging-induced collagen degradation. CF extract attenuated AGEs-induced ROS production and the upregulation of receptor for AGEs (RAGE). The overall results suggest that CF extract provides an effective anti-aging strategy by preventing skin damage from oxidative stress and collagen loss with potent antioxidant, anti-photoaging, and antiglycation activities.


Subject(s)
Chenopodium , Skin Aging , Antioxidants/metabolism , Antioxidants/pharmacology , Collagen/metabolism , Humans , Oxidative Stress , Plant Extracts/metabolism , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Skin , Ultraviolet Rays/adverse effects
10.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6663-6671, 2022 Dec.
Article in Zh | MEDLINE | ID: mdl-36604916

ABSTRACT

This study investigated the mechanism of total flavonoid extract from Dracocephalum moldavica(TFDM) in mice with bleomycin(BLM)-induced pulmonary fibrosis(PF) and explored its mechanism against the pyroptosis pathway. A mouse model of PF was established by intratracheal infusion of bleomycin(4 mg·kg~(-1)), and the normal group was treated with the same dose of saline under the same conditions. After the second day of modeling, the distilled water was given to the normal and model groups by gavage, and the corresponding drug were given to the TFDM and the dexamethasone groups for 28 consecutive days. After 28 days, lung tissues of mice with PF were taken to determine the content of hydroxyproline(HYP). The degree of lung inflammation and fibrosis was observed by hematoxylin-eosin(HE) and Masson stainings, and the content of interleukin-18(IL-18) and interleukin-1ß(IL-1ß) in the serum of mice with PF were measured by enzyme-linked immunosorbent assay(ELISA). Western blot was used to determine the expression levels of proteins in the lung tissues of mice with PF. HE staining showed that the BLM group had abnormal lung tissue structures and showed more inflammatory cell infiltration. Masson staining showed plenty of collagenous fibrotic tissues that were stained blue in the lung tissues. As compared with the normal group, the content of HYP and levels of IL-18 and IL-1ß in the serum of rats in the BLM group were up-regulated(P<0.01). The protein expressions of type Ⅰ collagen(Col-1), fibronectin 1(FN1), α-smooth muscle actin(α-SMA), cysteinyl aspartate specific proteinase-1(caspase-1), gasdermin D(GSDMD), NOD-like receptor thermal protein domain associated protein 3(NLRP3), p62, and apoptosis-associated speck-like protein containing a CARD(ASC) in the lung tissues of mice with PF in the BLM group were increased(P<0.01), whereas the protein expressions of autophagy-related 5(ATG5) and Beclin1 were decreased(P<0.01). Compared with the BLM group, the TFDM groups and dexamethasone group showed normal lung tissue structures and reduced inflammatory cell infiltration. Less collagenous fibrous tissues in blue color were seen and the fibrosis in the lung tissue was alleviated in the TFDM groups and dexamethasone group, with the down-regulation of the content of HYP and the levels of IL-18 and IL-1ß(P<0.05, P<0.01). In the TFDM groups and dexamethasone group, the protein expression levels of Col-1, FN1, α-SMA, caspase-1, GSDMD, NLRP3, p62, and ASC were decreased(P<0.01), and the protein expressions of ATG5 and Beclin1 were increased(P<0.01) in the lung tissues of mice with PF. From the above results, it is known that TFDM down-regulates the levels of inflammatory factors and related proteins, and effectively mitigates the process of BLM-induced PF by regulating the pyroptosis pathways and potentially affecting the autophagy.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Beclin-1/pharmacology , Bleomycin/toxicity , Caspases , Dexamethasone/adverse effects , Flavonoids/pharmacology , Interleukin-18/genetics , Interleukin-18/metabolism , Lung , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pyroptosis
11.
J Cell Mol Med ; 25(14): 6602-6617, 2021 07.
Article in English | MEDLINE | ID: mdl-34075693

ABSTRACT

N6-methyladenosine (m6A) is a well-known modification of RNA. However, as a key m6A methyltransferase, METTL16 has not been thoroughly studied in gastric cancer (GC). Here, the biological role of METTL16 in GC and its underlying mechanism was studied. Immunohistochemistry was used to detect the expression of METTL16 and relationship between METTL16 level and prognosis of GC was analysed. CCK8, colony formation assay, EdU assay and xenograft mouse model were used to study the effect of METTL16. Regulatory mechanism of METTL16 in the progression of GC was studied through flow cytometry analysis, RNA degradation assay, methyltransferase inhibition assay, RT-qPCR and Western blotting. METTL16 was highly expressed in GC cells and tissues and was associated with prognosis. In vitro and in vivo experiments confirmed that METTL16 promoted proliferation of GC cells and tumour growth. Furthermore, down-regulation of METTL16 inhibited proliferation by G1/S blocking. Significantly, we identified cyclin D1 as a downstream effector of METTL16. Knock-down METTL16 decreased the overall level of m6A and the stability of cyclin D1 mRNA in GC cells. Meanwhile, inhibition of methyltransferase activity reduced the level of cyclin D1. METTL16-mediated m6A methylation promotes proliferation of GC cells through enhancing cyclin D1 expression.


Subject(s)
Cell Proliferation/genetics , Cyclin D1/genetics , Methyltransferases/genetics , Stomach Neoplasms/genetics , Adenosine/genetics , Adult , Aged , Animals , Cell Line, Tumor , Cell Movement/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Male , Methylation , Mice , Middle Aged , Prognosis , RNA Stability/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
12.
N Engl J Med ; 378(1): 22-34, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29262271

ABSTRACT

BACKGROUND: Spastic limb paralysis due to injury to a cerebral hemisphere can cause long-term disability. We investigated the effect of grafting the contralateral C7 nerve from the nonparalyzed side to the paralyzed side in patients with spastic arm paralysis due to chronic cerebral injury. METHODS: We randomly assigned 36 patients who had had unilateral arm paralysis for more than 5 years to undergo C7 nerve transfer plus rehabilitation (18 patients) or to undergo rehabilitation alone (18 patients). The primary outcome was the change from baseline to month 12 in the total score on the Fugl-Meyer upper-extremity scale (scores range from 0 to 66, with higher scores indicating better function). Results The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. RESULTS: The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. CONCLUSIONS: In this single-center trial involving patients who had had unilateral arm paralysis due to chronic cerebral injury for more than 5 years, transfer of the C7 nerve from the nonparalyzed side to the side of the arm that was paralyzed was associated with a greater improvement in function and reduction of spasticity than rehabilitation alone over a period of 12 months. Physiological connectivity developed between the ipsilateral cerebral hemisphere and the paralyzed hand. (Funded by the National Natural Science Foundation of China and others; Chinese Clinical Trial Registry number, 13004466 .).


Subject(s)
Arm/innervation , Hemiplegia/surgery , Muscle Spasticity/surgery , Nerve Transfer , Peripheral Nerves/transplantation , Action Potentials , Adolescent , Adult , Brain/diagnostic imaging , Brain Injuries, Traumatic/complications , Cerebral Palsy/complications , Disability Evaluation , Hemiplegia/etiology , Hemiplegia/rehabilitation , Humans , Male , Muscle Spasticity/etiology , Muscle Spasticity/rehabilitation , Nerve Transfer/adverse effects , Peripheral Nerves/anatomy & histology , Peripheral Nerves/physiology , Stroke/complications , Young Adult
13.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802228

ABSTRACT

The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL) is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3ß), and mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression, slowing down the maturation of melanosome transportation. These results indicated that DBL promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a potent antioxidant and depigmenting agent that may be used in whitening cosmetics.


Subject(s)
Caffeic Acids/pharmacology , Down-Regulation/drug effects , Epidermis/metabolism , MAP Kinase Signaling System/drug effects , Melanocytes/metabolism , Melanosomes/metabolism , Cell Line, Tumor , Humans , MAP Kinase Signaling System/genetics , Melanosomes/genetics
14.
World J Urol ; 38(6): 1579-1585, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31065795

ABSTRACT

BACKGROUND: To assess the impact of lymph node dissection (LND) extent on overall survival (OS) and cancer-specific survival (CSS) in patients with pN0M0 renal cell carcinoma (RCC) treated with radical nephrectomy (RN). MATERIALS AND METHODS: Data queried for this study include RCC (2010-2014) from the Surveillance, Epidemiology, and End Results (SEER) program. Kaplan-Meier analyses and multivariate Cox regression models tested the effect of number of removed lymph node (NRN) ≥ 50th percentile on OS and CSS. The associations were evaluated using propensity score (PS) matching adjustment. RESULTS: A total of 5532 pN0M0 RCC patients were enrolled in our study. The median NRN was 2 (IQR 1-6), the 50th percentile defined patients with NRN ≥ 2. Following PS adjustment, there were no significant differences in clinicopathologic features between two groups of patients except for age. Multivariate model analysis showed that patients with NRN < 2 had worse OS than those with NRN ≥ 2 in pT3 group (HR 1.442; P = 0.032) but not in pT1 and pT2 groups (HR 0.859 and 1.393, P = 0.443 and P = 0.267, respectively). However, patients with NRN < 2 had better CCS than those with NRN ≥ 2 in pT1 group (HR 0.368; P = 0.016) but not in pT2 and pT3 groups (HR 1.674 and 1.325, P = 0.216 and P = 0.176, respectively). CONCLUSIONS: More extensive LND (NRN ≥ 2) at RN is associated with better OS in pT3N0M0 RCC patients while it exerts negative influence on CCS in pT1N0M0 group. Hence, more extensive LND has therapeutic value in pT3 individuals but not in pT1 group.


Subject(s)
Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/surgery , Kidney Neoplasms/mortality , Kidney Neoplasms/surgery , Lymph Node Excision/methods , Nephrectomy , Aged , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/secondary , Female , Humans , Kidney Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging , Nephrectomy/methods , Propensity Score , Retrospective Studies , Survival Rate
15.
Wei Sheng Yan Jiu ; 49(2): 272-279, 2020 Mar.
Article in Zh | MEDLINE | ID: mdl-32290945

ABSTRACT

OBJECTIVE: To develop a method for the determination of 11 perfluorinated compounds(PFCs) in drinking water by solid phase extraction-ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS). METHODS: The target analytes in water samples were concentrated and purified by Oasis WAX SPE column and eluted with 5 mL methanol and 7 mL 0. 1% ammonia-methanol solution. The eluent was blown to near dryness under a nitrogen gas, diluting with methanol water solution(3∶7, V/V) to 1 mL for analysis by UPLC-MS/MS. RESULTS: There were good liner relationship in the range of 0. 5-50 µg/L. The detection limit and the limit of quantitation were 0. 03-0. 7 ng/L and 0. 5-3. 0 ng/L, respectively. The recoveries of 11 PFCs at three different spiked concentrations were 90. 0%-122. 3%, 87. 1%-130. 0% and 80. 0%-113. 7%, respectively, and the relative standard deviation were 1. 95%-8. 59%, 1. 27%-9. 08% and 2. 17%-10. 51%(n=6), respectively. CONCLUSION: This method has wide linear range, low detection limit and limit of quantitation, applicable for simultaneous analysis and monitorting of 11 PFCs in drinking water.


Subject(s)
Drinking Water/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Solid Phase Extraction , Tandem Mass Spectrometry
16.
Plant J ; 95(6): 937-946, 2018 09.
Article in English | MEDLINE | ID: mdl-29775492

ABSTRACT

Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8-1 (large8-1) and large grain8-2 (large8-2). LARGE8 encodes the mitogen-activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen-activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.


Subject(s)
Edible Grain/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Cell Proliferation , Edible Grain/enzymology , Edible Grain/growth & development , Genes, Plant/genetics , Genes, Plant/physiology , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/physiology , Mutation , Oryza/enzymology , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/physiology
17.
Biochem Biophys Res Commun ; 520(3): 586-593, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31623830

ABSTRACT

Accepted as crucial participators in human malignancies, long noncoding RNAs (lncRNAs) have been proven to exert significant function on the complicated processes of cancer progression. Although existing investigations have revealed the oncogenic role of lncRNA SOX2 overlapping transcript (SOX2-OT) in different kinds of cancers, such as osteosarcoma and cholangiocarcinoma, the potential role of it in prostate cancer (PC) is poorly understood. This study was the first attempt to decipher the underlying regulatory mechanism of SOX2-OT in PC. According to the data from this study, SOX2-OT expression was conspicuously elevated in PC tissues and cells. Silenced SOX2-OT could repress PC cell proliferation and migration. Besides, mechanism assays manifested that SOX2-OT bound with miR-369-3p and negatively correlated with miR-369-3p in PC. Additionally, miR-369-3p was confirmed to elicit suppressive impact on PC progression. What's more, cofilin 2 (CFL2) was testified to be a downstream target gene of miR-369-3p. Final rescue tests uncovered that CFL2 upregulation or miR-369-3p inhibition could largely restore SOX2-OT knockdown-mediated function on PC progression. To sum up, SOX2-OT accelerates cell proliferation and migration by targeting miR-369-3p/CFL2 axis in PC.


Subject(s)
Cofilin 2/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Long Noncoding/genetics , SOXB1 Transcription Factors/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cofilin 2/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/metabolism
18.
Int J Mol Sci ; 20(1)2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30621167

ABSTRACT

The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E2 (PGE2). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caffeic Acids/pharmacology , Epidermis/drug effects , Keratinocytes/drug effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Epidermis/metabolism , Epidermis/radiation effects , Heme Oxygenase-1/metabolism , Humans , Keratinocytes/metabolism , Keratinocytes/radiation effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/radiation effects , Oxidative Stress , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/radiation effects , Ultraviolet Rays
19.
Planta ; 245(1): 45-60, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27578095

ABSTRACT

MAIN CONCLUSION: Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.


Subject(s)
Chloroplasts/metabolism , Genes, Plant , Oryza/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Base Sequence , Chlorophyll/metabolism , Chloroplasts/ultrastructure , Cloning, Molecular , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation/genetics , Oryza/genetics , Oryza/ultrastructure , Phenotype , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Seedlings/ultrastructure , Transcription, Genetic
20.
Plant Physiol ; 170(4): 2110-23, 2016 04.
Article in English | MEDLINE | ID: mdl-26839129

ABSTRACT

Chloroplasts and mitochondria contain their own genomes and transcriptional and translational systems. Establishing these genetic systems is essential for plant growth and development. Here we characterized a mutant form of a Val-tRNA synthetase (OsValRS2) from Oryza sativa that is targeted to both chloroplasts and mitochondria. A single base change in OsValRS2 caused virescent to albino phenotypes in seedlings and white panicles at heading. We therefore named this mutant white panicle 1 (wp1). Chlorophyll autofluorescence observations and transmission electron microscopy analyses indicated that wp1 mutants are defective in early chloroplast development. RNA-seq analysis revealed that expression of nuclear-encoded photosynthetic genes is significantly repressed, while expression of many chloroplast-encoded genes also changed significantly in wp1 mutants. Western-blot analyses of chloroplast-encoded proteins showed that chloroplast protein levels were reduced in wp1 mutants, although mRNA levels of some genes were higher in wp1 than in wild type. We found that wp1 was impaired in chloroplast ribosome biogenesis. Taken together, our results show that OsValRS2 plays an essential role in chloroplast development and regulating chloroplast ribosome biogenesis.


Subject(s)
Chloroplasts/metabolism , Organelle Biogenesis , Oryza/enzymology , Plant Proteins/metabolism , Ribosomes/metabolism , Valine-tRNA Ligase/metabolism , Cell Nucleus/genetics , Chloroplasts/ultrastructure , Chromosome Mapping , Cloning, Molecular , Fluorescence , Gene Expression Regulation, Plant , Genes, Plant , Mutation , Oryza/genetics , Phenotype , Photosynthesis , Plant Proteins/genetics , Protein Biosynthesis , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/metabolism , Sequence Analysis, RNA , Subcellular Fractions/enzymology , Valine-tRNA Ligase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL