Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34555356

ABSTRACT

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Subject(s)
Adenocarcinoma of Lung/metabolism , DNA Methylation , Histone-Lysine N-Methyltransferase/chemistry , Histones/chemistry , Lung Neoplasms/metabolism , Repressor Proteins/chemistry , Adenocarcinoma of Lung/mortality , Animals , Biopsy , CRISPR-Cas Systems , Carcinogenesis/genetics , Disease Progression , Epigenesis, Genetic , Epigenomics , Female , Humans , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Oncogenes , Prognosis , Signal Transduction , Treatment Outcome
2.
Mol Cell ; 76(1): 70-81.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31445886

ABSTRACT

N6-methyladenosine (m6A) modification occurs co-transcriptionally and impacts pre-mRNA processing; however, the mechanism of co-transcriptional m6A-dependent alternative splicing regulation is still poorly understood. Heterogeneous nuclear ribonucleoprotein G (hnRNPG) is an m6A reader protein that binds RNA through RRM and Arg-Gly-Gly (RGG) motifs. Here, we show that hnRNPG directly binds to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) using RGG motifs in its low-complexity region. Through interactions with the phosphorylated CTD and nascent RNA, hnRNPG associates co-transcriptionally with RNAPII and regulates alternative splicing transcriptome-wide. m6A near splice sites in nascent pre-mRNA modulates hnRNPG binding, which influences RNAPII occupancy patterns and promotes exon inclusion. Our results reveal an integrated mechanism of co-transcriptional m6A-mediated splicing regulation, in which an m6A reader protein uses RGG motifs to co-transcriptionally interact with both RNAPII and m6A-modified nascent pre-mRNA to modulate RNAPII occupancy and alternative splicing.


Subject(s)
Adenosine/analogs & derivatives , Alternative Splicing , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA Precursors/biosynthesis , RNA, Messenger/biosynthesis , Transcription, Genetic , Adenosine/metabolism , Amino Acid Motifs , Binding Sites , Exons , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , Structure-Activity Relationship
3.
RNA ; 30(5): 548-559, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531647

ABSTRACT

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Subject(s)
RNA, Transfer , RNA , Humans , Methylation , RNA, Transfer/chemistry , RNA/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism , Methyltransferases/metabolism , RNA, Messenger/genetics
4.
Nat Chem Biol ; 19(11): 1384-1393, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37400536

ABSTRACT

Compact CRISPR-Cas systems offer versatile treatment options for genetic disorders, but their application is often limited by modest gene-editing activity. Here we present enAsCas12f, an engineered RNA-guided DNA endonuclease up to 11.3-fold more potent than its parent protein, AsCas12f, and one-third of the size of SpCas9. enAsCas12f shows higher DNA cleavage activity than wild-type AsCas12f in vitro and functions broadly in human cells, delivering up to 69.8% insertions and deletions at user-specified genomic loci. Minimal off-target editing is observed with enAsCas12f, suggesting that boosted on-target activity does not impair genome-wide specificity. We determine the cryo-electron microscopy (cryo-EM) structure of the AsCas12f-sgRNA-DNA complex at a resolution of 2.9 Å, which reveals dimerization-mediated substrate recognition and cleavage. Structure-guided single guide RNA (sgRNA) engineering leads to sgRNA-v2, which is 33% shorter than the full-length sgRNA, but with on par activity. Together, the engineered hypercompact AsCas12f system enables robust and faithful gene editing in mammalian cells.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Cryoelectron Microscopy , CRISPR-Cas Systems/genetics , DNA/chemistry , Mammals/genetics
5.
Nat Methods ; 17(5): 515-523, 2020 05.
Article in English | MEDLINE | ID: mdl-32251394

ABSTRACT

Transcription is a highly dynamic process that generates single-stranded DNA (ssDNA) in the genome as 'transcription bubbles'. Here we describe a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, based on the fast and specific reaction between N3-kethoxal and guanines in ssDNA. KAS-seq allows rapid (within 5 min), sensitive and genome-wide capture and mapping of ssDNA produced by transcriptionally active RNA polymerases or other processes in situ using as few as 1,000 cells. KAS-seq enables definition of a group of enhancers that are single-stranded and enrich unique sequence motifs. These enhancers are associated with specific transcription-factor binding and exhibit more enhancer-promoter interactions than typical enhancers do. Under conditions that inhibit protein condensation, KAS-seq uncovers a rapid release of RNA polymerase II (Pol II) from a group of promoters. KAS-seq thus facilitates fast and accurate analysis of transcription dynamics and enhancer activities simultaneously in both low-input and high-throughput manner.


Subject(s)
Aldehydes/chemistry , DNA, Single-Stranded/analysis , DNA, Single-Stranded/chemistry , Enhancer Elements, Genetic , High-Throughput Nucleotide Sequencing/methods , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Animals , Butanones , DNA, Single-Stranded/genetics , Gene Expression Regulation , Humans , Mice , Transcription, Genetic
6.
Nat Methods ; 17(7): 749, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32475983

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Biochem Biophys Res Commun ; 589: 240-246, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34929447

ABSTRACT

Estrogen signaling plays important roles in diverse physiological and pathophysiological processes. However, the relationship between estrogen signaling and epigenetic regulation is not fully understood. Here, we explored the effect of estrogen signaling on the expression of Ten-Eleven Translocation (TET) family genes and DNA hydroxylmethylation in estrogen receptor alpha positive (ERα+) breast cancer cells. By analyzing the RNA-seq data, we identified TET2 as an estradiol (E2)-responsive gene in ERα+ MCF7 cells. RT-qPCR and Western blot analyses confirmed that both the mRNA and protein levels of TET2 gene were upregulated in MCF7 cells by E2 treatment. ChIP-seq and qPCR analyses showed that the enrichment of ERα and H3K27ac on the upstream regulatory regions of TET2 gene was increased in MCF7 cells upon E2 treatment. Moreover, E2 treatment also led to a significant increase in the global 5-hydroxymethylcytosine (5hmC) level, while knockout of TET2 abolished such E2-induced 5hmC increase. Conversely, treatment with ICI 182780, a potent and selective estrogen receptor degrader (SERD), inhibited TET2 gene expression and down-regulated the 5hmC level in MCF7 cells. Taken together, our study identified an ERα/TET2/5hmC epigenetic pathway, which may participate in the estrogen-associated physiological and pathophysiological processes.


Subject(s)
5-Methylcytosine/metabolism , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Estrogens/metabolism , Gene Expression Regulation, Neoplastic , Signal Transduction , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Enhancer Elements, Genetic/genetics , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oxidation-Reduction , Protein Binding/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
9.
Nat Commun ; 15(1): 6852, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127768

ABSTRACT

Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.


Subject(s)
Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Enhancer Elements, Genetic/genetics , Chromatin/metabolism , Chromatin/genetics , Binding Sites , Humans , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Chromatin Immunoprecipitation Sequencing/methods , Transposases/metabolism , Transposases/genetics , Regulatory Elements, Transcriptional , Tretinoin/pharmacology , Tretinoin/metabolism , Gene Expression Regulation , Cell Differentiation/genetics , Sequence Analysis, DNA/methods , Regulatory Sequences, Nucleic Acid/genetics
10.
JCO Precis Oncol ; 8: e2300297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295320

ABSTRACT

PURPOSE: Neuroblastoma is the most common extracranial solid tumor in childhood. We previously showed that circulating cell-free DNA (cfDNA) and tumor biopsy derived 5-hydroxymethylcytosime (5-hmC) profiles identified patients with neuroblastoma who experienced subsequent relapse. Here, we hypothesized that 5-hmC modifications selectively enriched in cfDNA compared with tumor biopsy samples would identify epigenetic changes associated with aggressive tumor behavior and identify novel biomarkers of outcome in patients with high-risk neuroblastoma. METHODS: 5-hmC profiles from cfDNA (n = 64) and tumor biopsies (n = 48) were compared. Two neuroblastoma cell lines underwent chromatin immunoprecipitation followed by sequencing (ChIP-Seq) for H3K27me3, H3K4me3, and H3K27ac; kethoxal-associated single-stranded DNA sequencing; hmC-Seal for 5-hmC; and RNA-sequencing (RNA-Seq). Genes enriched for both H3K27me3 and H3K4me3 in the included cell lines were defined as bivalent. Using bivalent genes defined in vitro, a bivalent signature was established in three publicly available cohorts of patients with neuroblastoma through gene set variation analysis. Differences between tumors with high or low bivalent signatures were assessed by the Kaplan-Meier method and Cox proportional hazards models. RESULTS: In cfDNA compared with tumor biopsy derived 5-hmC profiles, we found increased 5-hmC deposition on Polycomb Repressive Complex 2 target genes, a finding previously described in the context of bivalent genes. We identified 313 genes that bore bivalent chromatin marks, were enriched for mediators of neuronal differentiation, and were transcriptionally repressed across a panel of heterogeneous neuroblastoma cell lines. In three distinct clinical cohorts, low bivalent signature was significantly and independently associated with worse clinical outcome in patients with high-risk neuroblastoma. CONCLUSION: Low expression of bivalent genes is a biomarker of worse outcome in patients with high-risk neuroblastoma.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cell-Free Nucleic Acids , Neuroblastoma , Humans , Histones/genetics , Histones/metabolism , Prognosis , Neuroblastoma/genetics
11.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138174

ABSTRACT

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Subject(s)
Copper Transporter 1 , Copper , Cyclic AMP Response Element-Binding Protein , ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/genetics , Copper/metabolism , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Copper Transporter 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Transcription, Genetic/drug effects
12.
Bioinform Adv ; 3(1): vbad121, 2023.
Article in English | MEDLINE | ID: mdl-37745002

ABSTRACT

Motivation: Kethoxal-assisted ssDNA sequencing (KAS-seq) is rapidly gaining popularity as a robust and effective approach to study the nascent dynamics of transcriptionally engaged RNA polymerases through profiling of genome-wide single-stranded DNA (ssDNA). Its latest variant, spKAS-seq, a strand-specific version of KAS-seq, has been developed to map genome-wide R-loop structures by detecting imbalances of ssDNA on two strands. However, user-friendly, open-source computational tools tailored for KAS-seq data are still lacking. Results: Here, we introduce KAS-Analyzer, the first comprehensive computational framework aimed at streamlining and enhancing the analysis and interpretation of KAS-seq and spKAS-seq data. In addition to standard analyses, KAS-Analyzer offers many novel tools specifically designed for KAS-seq data, including, but not limited to: calculation of transcription-related metrics, identification of single-stranded transcribing (SST) enhancers, high-resolution mapping of R-loops, and differential RNA polymerase activity analysis. We provided a detailed overview of KAS-seq data and its diverse applications through the implementation of KAS-Analyzer. Using the example time-course KAS-seq datasets, we further showcase the robust capabilities of KAS-Analyzer for investigating dynamic transcriptional regulatory programs in response to UVB radiation. Availability and implementation: KAS-Analyzer is available at https://github.com/Ruitulyu/KAS-Analyzer.

13.
bioRxiv ; 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37163024

ABSTRACT

Neuroblastoma is the most common extra-cranial solid tumor in childhood and epigenetic dysregulation is a key driver of this embryonal disease. In cell-free DNA from neuroblastoma patients with high-risk disease, we found increased 5-hydroxymethylcytosine (5-hmC) deposition on Polycomb Repressive Complex 2 (PRC2) target genes, a finding previously described in the context of bivalent genes. As bivalent genes, defined as genes bearing both activating (H3K4me3) and repressive (H3K27me3) chromatin modifications, have been shown to play an important role in development and cancer, we investigated the potential role of bivalent genes in maintaining a de-differentiated state in neuroblastoma and their potential use as a biomarker. We identified 313 genes that bore bivalent chromatin marks, were enriched for mediators of neuronal differentiation, and were transcriptionally repressed across a panel of heterogenous neuroblastoma cell lines. Through gene set variance analysis, we developed a clinically implementable bivalent signature. In three distinct clinical cohorts, low bivalent signature was significantly and independently associated with worse clinical outcome in high-risk neuroblastoma patients. Thus, low expression of bivalent genes is a biomarker of ultra-high-risk disease and may represent a therapeutic opportunity in neuroblastoma.

14.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693440

ABSTRACT

Fluxes in human intra- and extracellular copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate (cAMP). We herein applied an unbiased temporal evaluation of the whole-genome transcriptional activities modulated by fluctuations in copper levels to identify the copper sensor proteins responsible for driving these activities. We found that fluctuations in physiologically-relevant copper levels rapidly modulate EGFR/MAPK/ERK signal transduction and activation of the transcription factor cAMP response element-binding protein (CREB). Both intracellular and extracellular assays support Cu 1+ inhibition of the EGFR-phosphatase PTPN2 (and potentially the homologous PTPN1)-via direct ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism of copper-stimulated EGFR signal transduction activation. Depletion of copper represses this signaling pathway. We additionally show i ) copper supplementation drives transcriptional repression of the copper importer CTR1 and ii ) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper-stimulated MAPK/ERK/CREB-signaling and CTR1 expression, thereby uncovering a previously unrecognized link between copper levels and cellular signal transduction.

15.
Science ; 379(6633): 677-682, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36705538

ABSTRACT

N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.


Subject(s)
Exons , Gene Expression Regulation , RNA Splicing , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Animals
16.
Sci Adv ; 8(48): eabq2166, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36449625

ABSTRACT

R-loops affect transcription and genome stability. Dysregulation of R-loops is related to human diseases. Genome-wide R-loop mapping typically uses the S9.6 antibody or inactive ribonuclease H, both requiring a large number of cells with varying results observed depending on the approach applied. Here, we present strand-specific kethoxal-assisted single-stranded DNA (ssDNA) sequencing (spKAS-seq) to map R-loops by taking advantage of the presence of a ssDNA in the triplex structure. We show that spKAS-seq detects R-loops and their dynamics at coding sequences, enhancers, and other intergenic regions with as few as 50,000 cells. A joint analysis of R-loops and chromatin-bound RNA binding proteins (RBPs) suggested that R-loops can be RBP binding hotspots on the chromatin.


Subject(s)
DNA, Single-Stranded , R-Loop Structures , Humans , R-Loop Structures/genetics , DNA, Single-Stranded/genetics , Chromatin/genetics , Antibodies , Exons
17.
Epigenetics ; 17(10): 1180-1194, 2022 10.
Article in English | MEDLINE | ID: mdl-34689714

ABSTRACT

Aberrant DNA methylation is an epigenetic hallmark of malignant tumours. The DNA methylation level is regulated by not only DNA methyltransferases (DNMTs) but also Ten-Eleven Translocation (TET) family proteins. However, the exact role of TET genes in breast cancer remains controversial. Here, we uncover that the ERα-positive breast cancer patients with high TET2 mRNA expression had better overall survival rates. Consistently, knockout of TET2 promotes the tumorigenesis of ERα-positive MCF7 breast cancer cells. Mechanistically, TET2 loss leads to aberrant DNA methylation (gain of 5mC) at a large proportion of enhancers, accompanied by significant reduction in H3K4me1 and H3K27ac enrichment. By analysing the epigenetically reprogrammed enhancers, we identify oestrogen responsive element (ERE) as one of the enriched motifs of transcriptional factors. Importantly, TET2 loss impairs 17beta-oestradiol (E2)-induced transcription of the epigenetically reprogrammed EREs-associated genes through attenuating the binding of ERα. Taken together, these findings shed light on our understanding of the epigenetic mechanisms underlying the enhancer reprogramming during breast cancer pathogenesis.


Subject(s)
Breast Neoplasms , Dioxygenases , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Estradiol , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Female , Humans , Methyltransferases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism
18.
Nat Protoc ; 17(2): 402-420, 2022 02.
Article in English | MEDLINE | ID: mdl-35013616

ABSTRACT

Transcription and its dynamics are crucial for gene expression regulation. However, very few methods can directly read out transcriptional activity with low-input material and high temporal resolution. This protocol describes KAS-seq, a robust and sensitive approach for capturing genome-wide single-stranded DNA (ssDNA) profiles using N3-kethoxal-assisted labeling. We developed N3-kethoxal, an azido derivative of kethoxal that reacts with deoxyguanosine bases of ssDNA in live cells within 5-10 min at 37 °C, allowing the capture of dynamic changes. Downstream biotinylation of labeled DNA occurs via copper-free click chemistry. Altogether, the KAS-seq procedure involves N3-kethoxal labeling, DNA isolation, biotinylation, fragmentation, affinity pull-down, library preparation, sequencing and bioinformatics analysis. The pre-library construction labeling and enrichment can be completed in as little as 3-4 h and is applicable to both animal tissue and as few as 1,000 cultured cells. Our recent study shows that ssDNA signals measured by KAS-seq simultaneously reveal the dynamics of transcriptionally engaged RNA polymerase (Pol) II, transcribing enhancers, RNA Pol I and Pol III activities and potentially non-canonical DNA structures with high analytical sensitivity. In addition to the experimental protocol, we also introduce here KAS-pipe, a user-friendly integrative data analysis pipeline for KAS-seq.


Subject(s)
DNA, Single-Stranded
19.
Cancers (Basel) ; 13(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064441

ABSTRACT

Activation of PD-1/PD-L1 checkpoint is a critical step for the immune evasion of malignant tumors including breast cancer. However, the epigenetic mechanism underlying the aberrant expression of PD-L1 in breast cancer cells remains poorly understood. To investigate the role of TET2 in the regulation of PD-L1 gene expression, quantitative reverse transcription PCR (RT-qPCR), Western blotting, chromatin immunoprecipitation (ChIP) assay and MeDIP/hMeDIP-qPCR were performed on MCF7 and MDA-MB-231 human breast cancer cells. Here, we reported that TET2 depletion upregulated PD-L1 gene expression in MCF7 cells. Conversely, ectopic expression of TET2 inhibited PD-L1 gene expression in MDA-MB-231 cells. Mechanistically, TET2 protein recruits histone deacetylases (HDACs) to PD-L1 gene promoter and orchestrates a repressive chromatin structure to suppress PD-L1 gene transcription, which is likely independent of DNA demethylation. Consistently, treatment with HDAC inhibitors upregulated PD-L1 gene expression in wild-type (WT) but not TET2 KO MCF7 cells. Furthermore, analysis of the CCLE and TCGA data showed a negative correlation between TET2 and PD-L1 expression in breast cancer. Taken together, our results identify a new epigenetic regulatory mechanism of PD-L1 gene transcription, linking the catalytic activity-independent role of TET2 to the anti-tumor immunity in breast cancer.

20.
Cell Res ; 30(3): 256-268, 2020 03.
Article in English | MEDLINE | ID: mdl-32047271

ABSTRACT

Meiotic recombination is initiated by the formation of double-strand breaks (DSBs), which are repaired as either crossovers (COs) or noncrossovers (NCOs). In most mammals, PRDM9-mediated H3K4me3 controls the nonrandom distribution of DSBs; however, both the timing and mechanism of DSB fate control remain largely undetermined. Here, we generated comprehensive epigenomic profiles of synchronized mouse spermatogenic cells during meiotic prophase I, revealing spatiotemporal and functional relationships between epigenetic factors and meiotic recombination. We find that PRDM9-mediated H3K4me3 at DSB hotspots, coinciding with H3K27ac and H3K36me3, is intimately connected with the fate of the DSB. Our data suggest that the fate decision is likely made at the time of DSB formation: earlier formed DSBs occupy more open chromatins and are much more competent to proceed to a CO fate. Our work highlights an intrinsic connection between PRDM9-mediated H3K4me3 and the fate decision of DSBs, and provides new insight into the control of CO homeostasis.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Spermatogonia , Animals , Epigenesis, Genetic , Male , Meiotic Prophase I , Mice , Mice, Inbred C57BL , Mice, Knockout , Spermatogonia/cytology , Spermatogonia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL