Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 22(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576138

ABSTRACT

Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a validated strategy to prevent the progression of this common joint disorder. We recently described polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising selectivity profile against this collagenase. In this work, we have extended the study in order to explore the influence of bromine atoms and the nature of the S1' heterocyclic interacting moiety on the solubility/selectivity balance of this type of compound. Drug target interactions have been assessed through a combination of molecular modeling studies and NMR experiments. Compound 9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human osteosarcoma cells.


Subject(s)
Drug Design , Matrix Metalloproteinase Inhibitors/pharmacology , Osteosarcoma/pathology , Water/chemistry , Cell Line, Tumor , Click Chemistry , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/chemistry , Models, Molecular , Solubility
2.
Molecules ; 26(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34577077

ABSTRACT

Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.


Subject(s)
Histone Deacetylases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Animals , Humans , Proteasome Endopeptidase Complex/drug effects , Zinc/metabolism
3.
An. R. Acad. Nac. Farm. (Internet) ; 89(3): 265-285, Juli-Sep. 2023. ilus, tab
Article in Spanish | IBECS (Spain) | ID: ibc-226785

ABSTRACT

Los LYTACs (LYsosome TArgeting Chimeras) son una novedosa estrategia farmacológica basada en la degradación dirigida de proteínas extracelulares y transmembrana. Su mecanismo de acción se basa en la utilización de un receptor de membrana para internalizar a una proteína diana y promover su degradación lisosomal. Hasta la fecha, su desarrollo se ha basado en el uso de anticuerpos para la unión a la proteína diana, lo cual presenta ciertas desventajas desde el punto de vista farmacocinético y sintético. El objetivo de este trabajo es diseñar un LYTAC capaz de inducir la degradación selectiva de MMP-2 (LYTAC-MMP2), una metaloproteasa de la matriz que se encuentra sobreexpresada en diversos tipos de cáncer. LYTAC-MMP2 está formado por un ligando del receptor de manosa-6-fosfato independiente de cationes (CI- MPR) y un inhibidor selectivo de MMP2 previamente descrito. Se han empleado métodos computacionales de modelado por homología, docking y dinámica molecular para estudiar el receptor CI-MPR y su mecanismo de internalización, así como para la comparación del comportamiento dinámico libre en agua de un ligando de CI-MPR descrito en la bibliografía y el LYTAC-MMP2.(AU)


LYTACs (LYsosome TArgeting Chimeras) are a novel pharmacological strategy based on the targeted protein degradation of extracellular and transmembrane proteins. Their mechanism of action is based on the use of a membrane receptor to internalize a target protein and mediate its lysosomal degradation. To date, its development has been focused on the use of antibodies for target binding, which has certain disadvantages from the pharmacokinetic and synthetic point of view. The aim of this work is to design a LYTAC capable of inducing the selective degradation of MMP-2 (LYTAC-MMP2), a matrix metalloprotease that is overexpressed in many types of cancer. LYTAC-MMP2 consists of a cation-independent mannose-6-phosphate receptor (CI-MPR) ligand and a selective MMP-2 inhibitor developed by our research group. Computational methods of homology modelling, docking and molecular dynamics have been used to study the CI-MPR receptor and its internalization mechanism, as well as for the comparison of the dynamic behaviour in water of a CI-MPR ligand described in the literature and LYTAC-MMP2.(AU)


Subject(s)
Humans , Molecular Dynamics Simulation , Protein Transport , Metalloproteases , Mannose-6-Phosphate Isomerase
SELECTION OF CITATIONS
SEARCH DETAIL