Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Respir Res ; 23(1): 214, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999634

ABSTRACT

BACKGROUND: While there seems to be a consensus that a decrease in gut microbiome diversity is related to a decline in health status, the associations between respiratory microbiome diversity and chronic lung disease remain a matter of debate. We provide a systematic review and meta-analysis of studies examining lung microbiota alpha-diversity in patients with asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or bronchiectasis (NCFB), in which a control group based on disease status or healthy subjects is provided for comparison. RESULTS: We reviewed 351 articles on title and abstract, of which 27 met our inclusion criteria for systematic review. Data from 24 of these studies were used in the meta-analysis. We observed a trend that CF patients have a less diverse respiratory microbiota than healthy individuals. However, substantial heterogeneity was present and detailed using random-effects models, which limits the comparison between studies. CONCLUSIONS: Knowledge on respiratory microbiota is under construction, and for the moment, it seems that alpha-diversity measurements are not enough documented to fully understand the link between microbiota and health, excepted in CF context which represents the most studied chronic respiratory disease with consistent published data to link alpha-diversity and lung function. Whether differences in respiratory microbiota profiles have an impact on chronic respiratory disease symptoms and/or evolution deserves further exploration.


Subject(s)
Bronchiectasis , Cystic Fibrosis , Gastrointestinal Microbiome , Microbiota , Respiration Disorders , Bronchiectasis/diagnosis , Humans , Lung
2.
Bull Math Biol ; 83(8): 85, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34142264

ABSTRACT

Sequential infections with different dengue serotypes (DENV-1, 4) significantly increase the risk of a severe disease outcome (fever, shock, and hemorrhagic disorders). Two hypotheses have been proposed to explain the severity of the disease: (1) antibody-dependent enhancement (ADE) and (2) original T cell antigenic sin. In this work, we explored the first hypothesis through mathematical modeling. The proposed model reproduces the dynamic of susceptible and infected target cells and dengue virus in scenarios of infection-neutralizing and infection-enhancing antibody competition induced by two distinct serotypes of the dengue virus during secondary infection. The enhancement and neutralization functions are derived from basic concepts of chemical reactions and used to mimic binding to the virus by two distinct populations of antibodies. The analytic study of the model showed the existence of two equilibriums: a disease-free equilibrium and an endemic one. Using the concept of the basic reproduction number [Formula: see text], we performed the asymptotic stability analysis for the two equilibriums. To measure the severity of the disease, we considered the maximum value of infected cells as well as the time when this maximum is reached. We observed that it corresponds to the time when the maximum enhancing activity for the infection occurs. This critical time was calculated from the model to be a few days after the occurrence of the infection, which corresponds to what is observed in the literature. Finally, using as output [Formula: see text], we were able to rank the contribution of each parameter of the model. In particular, we highlighted that the cross-reactive antibody responses may be responsible for the disease enhancement during secondary heterologous dengue infection.


Subject(s)
Coinfection , Dengue Virus , Dengue , Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , Humans , Mathematical Concepts , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL