ABSTRACT
The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.
Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Virus/immunology , Animals , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/immunology , Mice , Mice, Inbred C57BLABSTRACT
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Subject(s)
Extracellular Vesicles , Humans , Biomarkers, Tumor , Liquid Biopsy/methods , NanotechnologyABSTRACT
Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.
Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease/immunology , Histocompatibility Antigens Class II/immunology , Macrophages/immunology , Neuroinflammatory Diseases/immunology , Animals , Chronic Disease , Female , MiceABSTRACT
Postprandial hypoglycemia is a complication of Roux-en-Y gastric bypass (RYGB), but the effects of postprandial exercise and meal glycemic index (GI) on postprandial glucose and glucoregulatory hormone responses are unknown. Ten RYGB-operated and 10 age and weight-matched unoperated women completed four test days in random order ingesting mixed meals with high GI (HGI, GI = 93) or low GI (LGI, GI = 54), but matched on energy and macronutrient content. Ten minutes after meal completion, participants rested or cycled for 30 min at 70% of maximum oxygen uptake (VÌo2max). Blood was collected for 4 h. Postprandial exercise did not lower plasma nadir glucose in RYGB after HGI (HGI/rest 3.7 ± 0.5 vs. HGI/Ex 4.1 ± 0.4 mmol/L, P = 0.070). Replacing HGI with LGI meals raised glucose nadir in RYGB (LGI/rest 4.1 ± 0.5 mmol/L, P = 0.034) and reduced glucose excursions (Δpeak-nadir) but less so in RYGB (-14% [95% CI: -27; -1]) compared with controls (-33% [-51; -14]). Insulin responses mirrored glucose concentrations. Glucagon-like peptide 1 (GLP-1) responses were greater in RYGB versus controls, and higher with HGI versus LGI. Glucose-dependent insulinotropic polypeptide (GIP) responses were greater after HGI versus LGI in both groups. Postexercise glucagon responses were lower in RYGB than controls, and noradrenaline responses tended to be lower in RYGB, whereas adrenaline responses were similar between groups. In conclusion, moderate intensity cycling shortly after meal intake did not increase the risk of postprandial hypoglycemia after RYGB. The low GI meal increased nadir glucose and reduced glucose excursions compared with the high GI meal. RYGB participants had lower postexercise glucagon responses compared with controls.NEW & NOTEWORTHY We investigate the effect of moderate exercise after a high or a low glycemic index meal on nadir glucose and glucoregulatory hormones in gastric bypass-operated individuals and in matched unoperated controls. Cycling shortly after meal intake did not increase the risk of hypoglycemia in operated individuals. The low glycemic index meal increased glucose nadir and reduced excursions compared with the high glycemic index meal. Operated individuals had lower postexercise glucagon responses compared with controls.
Subject(s)
Gastric Bypass , Hypoglycemia , Humans , Female , Glycemic Index , Blood Glucose , Glucagon/metabolism , Oxygen Consumption , Oxygen , Insulin , Meals , Glucose , Postprandial PeriodABSTRACT
Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.
Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neoplasm Proteins/genetics , Netrins/genetics , Alleles , Animals , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Cell Line, Tumor , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Genome-Wide Association Study , Genomics/methods , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Netrins/metabolism , Phenotype , Quantitative Trait Loci , RiskABSTRACT
AIMS: Sacubitril/valsartan is a neprilysin-inhibitor/angiotensin II receptor blocker used for the treatment of heart failure. Recently, a post-hoc analysis of a 3-year randomized controlled trial showed improved glycaemic control with sacubitril/valsartan in patients with heart failure and type 2 diabetes. We previously reported that sacubitril/valsartan combined with a dipeptidyl peptidase-4 inhibitor increases active glucagon-like peptide-1 (GLP-1) in healthy individuals. We now hypothesized that administration of sacubitril/valsartan with or without a dipeptidyl peptidase-4 inhibitor would lower postprandial glucose concentrations (primary outcome) in patients with type 2 diabetes via increased active GLP-1. METHODS: We performed a crossover trial in 12 patients with obesity and type 2 diabetes. A mixed meal was ingested following five respective interventions: (a) a single dose of sacubitril/valsartan; (b) sitagliptin; (c) sacubitril/valsartan + sitagliptin; (d) control (no treatment); and (e) valsartan alone. Glucose, gut and pancreatic hormone responses were measured. RESULTS: Postprandial plasma glucose increased by 57% (incremental area under the curve 0-240 min) (p = .0003) and increased peak plasma glucose by 1.7 mM (95% CI: 0.6-2.9) (p = .003) after sacubitril/valsartan compared with control, whereas postprandial glucose levels did not change significantly after sacubitril/valsartan + sitagliptin. Glucagon, GLP-1 and C-peptide concentrations increased after sacubitril/valsartan, but insulin and glucose-dependent insulinotropic polypeptide did not change. CONCLUSIONS: The glucose-lowering effects of long-term sacubitril/valsartan treatment reported in patients with heart failure and type 2 diabetes may not depend on changes in entero-pancreatic hormones. Neprilysin inhibition results in hyperglucagonaemia and this may explain the worsen glucose tolerance observed in this study. CLINICALTRIALS: gov (NCT03893526).
Subject(s)
Aminobutyrates , Angiotensin Receptor Antagonists , Biphenyl Compounds , Blood Glucose , Diabetes Mellitus, Type 2 , Heart Failure , Hypoglycemic Agents , Neprilysin , Valsartan , Aged , Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Biphenyl Compounds/therapeutic use , Blood Glucose/analysis , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Combinations , Glucagon-Like Peptide 1/blood , Glucose Tolerance Test , Heart Failure/complications , Heart Failure/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Neprilysin/antagonists & inhibitors , Sitagliptin Phosphate/therapeutic use , Tetrazoles/therapeutic use , Valsartan/therapeutic useABSTRACT
Animal models clearly illustrate that the maintenance of skeletal muscle mass depends on the function and interaction of a heterogeneous population of resident and infiltrating mononuclear cells. Several lines of evidence suggest that mononuclear cells also play a role in muscle wasting in humans, and targeting these cells may open new treatment options for intervention or prevention in sarcopenia. Methodological and ethical constraints have perturbed exploration of the cellular characteristics and function of mononuclear cells in human skeletal muscle. Thus, investigations of cellular phenotypes often depend on immunohistochemical analysis of small tissue samples obtained by needle biopsies, which do not match the deep phenotyping of mononuclear cells obtained from animal models. Here, we have developed a protocol for fluorescence-activated cell sorting (FACS), based on single-cell RNA-sequencing data, for quantifying and characterizing mononuclear cell populations in human skeletal muscle. Muscle stem cells, fibro-adipogenic progenitors, and two subsets of macrophages (CD11c+/-) are present in needle biopsies in comparable quantities per milligram tissue to open surgical biopsies. We find that direct cell isolation is preferable due to a substantial shift in transcriptome when using preculture before the FACS procedure. Finally, in vitro validation of the cellular phenotype of muscle stem cells, fibro-adipogenic progenitors, and macrophages confirms population-specific traits. This study demonstrates that mononuclear cell populations can be quantified and subsequently analyzed from needle biopsy material and opens the perspective for future clinical studies of cellular mechanisms in muscle wasting.
Subject(s)
Biopsy , Cell Differentiation/physiology , Muscle, Skeletal/cytology , Satellite Cells, Skeletal Muscle/cytology , Adipogenesis/physiology , Biopsy/methods , Cell Separation/methods , Flow Cytometry/methods , Humans , Macrophages/cytologyABSTRACT
KEY POINTS: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.
Subject(s)
Insulin Resistance , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Niacinamide/analogs & derivatives , Obesity/physiopathology , Humans , Male , Middle Aged , NAD/metabolism , Niacinamide/administration & dosage , Nicotinamide Phosphoribosyltransferase/metabolism , Pyridinium CompoundsABSTRACT
Naïve CD4+ T cells in the periphery differentiate into regulatory T cells (Tregs) in which Foxp3 is expressed for their suppressive function. NLRP3, a pro-inflammatory molecule, is known to be involved in inflammasome activation associated with several diseases. Recently, the expression of NLRP3 in CD4+ T cells, as well as in myeloid cells, has been described; however, a role of T cell-intrinsic NLRP3 in Treg differentiation remains unknown. Here, we report that NLRP3 impeded the expression of Foxp3 independent of inflammasome activation in Tregs. NLRP3-deficient mice elevate Treg generation in various organs in the de novo pathway. NLRP3 deficiency increased the amount and suppressive activity of Treg populations, whereas NLRP3 overexpression reduced Foxp3 expression and Treg abundance. Importantly, NLRP3 interacted with Kpna2 and translocated to the nucleus from the cytoplasm under Treg-polarizing conditions. Taken together, our results identify a novel role for NLRP3 as a new negative regulator of Treg differentiation, mediated via its interaction with Kpna2 for nuclear translocation.
Subject(s)
Cell Differentiation , Cell Nucleus/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , alpha Karyopherins/metabolism , Animals , Female , Forkhead Transcription Factors/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Models, Biological , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Protein TransportABSTRACT
Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.
Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Cyclin D1/genetics , DNA Repair/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Damage/genetics , Enhancer Elements, Genetic/genetics , Estrogens/metabolism , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Humans , MCF-7 Cells , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/geneticsABSTRACT
Epithelial-mesenchymal transition (EMT) is a primary mechanism for cancer metastasis. Detecting the activation of EMT can potentially convey signs of metastasis to guide treatment management and improve patient survival. One of the classic signatures of EMT is characterized by dynamic changes in cellular expression levels of E-cadherin and N-cadherin, whose soluble active fragments have recently been reported to be biomarkers for cancer diagnosis and prognosis. Herein, a microfluidic immunoassay (termed "SERS immunoassay") based on sensitive and simultaneous detection of soluble E-cadherin (sE-cadherin) and soluble N-cadherin (sN-cadherin) for EMT monitoring in patients' plasma is presented. The SERS immunoassay integrates in situ nanomixing and surface-enhanced Raman scattering readout to enable accurate detection of sE-cadherin and sN-cadherin from as low as 10 cells mL-1 . This assay enables tracking of a concurrent decrease in sE-cadherin and increase in sN-cadherin in breast cancer cells undergoing drug-induced mesenchymal transformation. The clinical potential of the SERS immunoassay is further demonstrated by successful detection of sE-cadherin and sN-cadherin in metastatic stage IV breast cancer patient plasma samples. The SERS immunoassay can potentially sense the activation of EMT to provide early indications of cancer invasions or metastasis.
Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Immunoassay , Pharmaceutical Preparations , Spectrum Analysis, Raman , Breast Neoplasms/physiopathology , Cadherins/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Humans , MicrofluidicsABSTRACT
A manner in which cells can communicate with each other is via secreted nanoparticles termed exosomes. These vesicles contain lipids, nucleic acids, and proteins, and are said to reflect the cell-of-origin. However, for the exosomal protein content, there is limited evidence in the literature to verify this statement. Here, proteomic assessment combined with pathway-enrichment analysis is used to demonstrate that the protein cargo of exosomes reflects the epithelial/mesenchymal phenotype of secreting breast cancer cells. Given that epithelial-mesenchymal plasticity is known to implicate various stages of cancer progression, the results suggest that breast cancer subtypes with distinct epithelial and mesenchymal phenotypes may be distinguished by directly assessing the protein content of exosomes. Additionally, the work is a substantial step toward verifying the statement that cell-derived exosomes reflect the phenotype of the cells-of-origin.
Subject(s)
Breast Neoplasms/pathology , Animals , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/ultrastructure , Cell Line, Tumor , Chromatography, Liquid , Epithelial-Mesenchymal Transition/physiology , Exosomes/metabolism , Exosomes/pathology , Exosomes/ultrastructure , Female , Humans , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microscopy, Electron, TransmissionABSTRACT
While tumour cells are classically known to communicate via direct cell-to-cell contact and the secretion of soluble protein-based factors such as cytokines and growth factors, alternative novel mechanisms that promote tumour progression have recently emerged. Now, new critical components of the secretome thought to be involved in tumour progression are exosomes, small vesicles of endocytic origin that carry a variety of bioactive molecules, including proteins, lipids, RNA, as well as DNA molecules. Cancer cell-derived exosomes have been shown to participate in crucial steps of metastatic spread of a primary tumour, ranging from oncogenic reprogramming of malignant cells to formation of pre-metastatic niches. These effects are achieved through the mediation of intercellular cross-talk and subsequent modification of both local and distant microenvironments in an autocrine and paracrine fashion. Here, we summarise the recent findings that implicate this non-canonical signalling within the tumour as a critical driver of metastatic disease progression, and discuss how understanding the molecular mechanisms involved in exosome-mediated metastasis is of great value for the development of new therapeutic strategies to prevent cancer progression.
Subject(s)
Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Neoplasms/metabolism , Tumor Microenvironment/genetics , Biological Transport , Cell Communication , Cytokines/genetics , Cytokines/metabolism , Disease Progression , Exosomes/pathology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism/genetics , Lymphatic Metastasis , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/pathology , Nucleic Acids/genetics , Nucleic Acids/metabolismABSTRACT
Repeated periodization of carbohydrate (CHO) intake using a diet-exercise strategy called the sleep-low model can potentially induce mitochondrial biogenesis and improve endurance performance in endurance-trained individuals. However, more studies are needed to confirm the performance-related effects and to investigate the sustained effects on maximal fat oxidation (MFO) rate and proteins involved in intramuscular lipid metabolism. Thirteen endurance-trained males (age 23-44 years; V Ë O2 -max, 63.9 ± 4.6 mL·kg-1 ·min-1 ) were randomized into two groups: sleep-low (LOW-CHO) or high CHO availability (HIGH-CHO) in three weekly training blocks over 4 weeks. The acute metabolic response was investigated during 60 minutes of exercise within the last 3 weeks of the intervention. Pre- and post-intervention, 30-minute time-trial performance was investigated after a 90-minute pre-load, which as a novel approach included nine intense intervals (and estimation of MFO). Additionally, muscle biopsies (v. lateralis) were obtained to investigate expression of proteins involved in intramuscular lipid metabolism using Western blotting. During acute exercise, average fat oxidation rate was ~36% higher in LOW-CHO compared to HIGH-CHO (P = .03). This did not translate into sustained effects on MFO. Time-trial performance increased equally in both groups (overall time effect: P = .005). We observed no effect on intramuscular proteins involved in lipolysis (ATGL, G0S2, CGI-58, HSL) or fatty acid transport and ß-oxidation (CD-36 and HAD, respectively). In conclusion, the sleep-low model did not induce sustained effects on MFO, endurance performance, or proteins involved in intramuscular lipid metabolism when compared to HIGH-CHO. Our study therefore questions the transferability of acute effects of the sleep-low model to superior sustained adaptations.
Subject(s)
Athletic Performance , Diet/methods , Dietary Carbohydrates/administration & dosage , Physical Endurance , Adipose Tissue/metabolism , Adult , Athletes , Exercise , Humans , Lipid Metabolism , Male , Muscle, Skeletal/metabolism , Oxygen Consumption , Periodicity , Young AdultABSTRACT
Exosomes are nanoscale (≈30-150 nm) extracellular vesicles of endocytic origin that are shed by most types of cells and circulate in bodily fluids. Exosomes carry a specific composition of proteins, lipids, RNA, and DNA and can work as cargo to transfer this information to recipient cells. Recent studies on exosomes have shown that they play an important role in various biological processes, such as intercellular signaling, coagulation, inflammation, and cellular homeostasis. These functional roles are attributed to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting the physiological and pathological conditions in various diseases, including cancer and neurodegenerative, infectious, and autoimmune diseases (e.g., cancer initiation, progression, and metastasis). Due to these unique characteristics, exosomes are considered promising biomarkers for the diagnosis and prognosis of various diseases via noninvasive or minimally invasive procedures. Over the last decade, a plethora of methodologies have been developed for analyzing disease-specific exosomes using optical and nonoptical tools. Here, the major biological functions, significance, and potential role of exosomes as biomarkers and therapeutics are discussed. Furthermore, an overview of the most commonly used techniques for exosome analysis, highlighting the major technical challenges and limitations of existing techniques, is presented.
ABSTRACT
Mammography screening has increased the detection of early pre-invasive breast cancers, termed ductal carcinoma in situ (DCIS), increasing the urgency of identifying molecular regulators of invasion as prognostic markers to predict local relapse. Using the MMTV-PyMT breast cancer model and pharmacological protease inhibitors, we reveal that cysteine cathepsins have important roles in early-stage tumorigenesis. To characterize the cell-specific roles of cathepsins in early invasion, we developed a DCIS-like model, incorporating an immortalized myoepithelial cell line (N1ME) that restrained tumor cell invasion in 3D culture. Using this model, we identified an important myoepithelial-specific function of the cysteine cathepsin inhibitor stefin A in suppressing invasion, whereby targeted stefin A loss in N1ME cells blocked myoepithelial-induced suppression of breast cancer cell invasion. Enhanced invasion observed in 3D cultures with N1ME stefin A-low cells was reliant on cathepsin B activation, as addition of the small molecule inhibitor CA-074 rescued the DCIS-like non-invasive phenotype. Importantly, we confirmed that stefin A was indeed abundant in myoepithelial cells in breast tissue. Use of a 138-patient cohort confirmed that myoepithelial stefin A (cystatin A) is abundant in normal breast ducts and low-grade DCIS but reduced in high-grade DCIS, supporting myoepithelial stefin A as a candidate marker of lower risk of invasive relapse. We have therefore identified myoepithelial cell stefin A as a suppressor of early tumor invasion and a candidate marker to distinguish patients who are at low risk of developing invasive breast cancer, and can therefore be spared further treatment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cell Movement , Cystatin A/metabolism , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/drug therapy , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Cystatin A/genetics , Cysteine Proteinase Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Humans , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mice , Neoplasm Invasiveness , RNA Interference , Signal Transduction , Transfection , Tumor Microenvironment , Tumor Suppressor Proteins/geneticsABSTRACT
Lung cancer is responsible for the highest rate of cancer mortality worldwide. Lung cancer patients are often ineligible for tumor biopsies due to comorbidities. As a result, patients may not have the most effective treatment regimens administered. Patients with mutations in the epidermal growth factor receptor (EGFR) have improved survival in response to EGFR tyrosine kinase inhibitors. A noninvasive method of determining EGFR mutations in patients would have promising clinical applications. Exosomes have the potential to be noninvasive novel diagnostic markers in cancer. Using MS analysis, we identify differentially abundant cell and exosome proteins induced by mutations in p53 and EGFR in lung cells. Importantly, mutations in p53 and EGFR alter cell and exosome protein content compared to an isogenic normal lung epithelial cell. For some proteins, mutation had similar effects in the cell of origin and exosomes. Differences between the cells of origin and exosomes were also apparent, which may reflect specific packaging of proteins into exosomes. These findings that mutations alter protein abundance in exosomes suggest that analysis of exosomes may be beneficial in the diagnosis of oncogenic mutations.
Subject(s)
Cell Transformation, Neoplastic/metabolism , ErbB Receptors/genetics , Exosomes/metabolism , Lung Neoplasms/metabolism , Mutation , Tumor Suppressor Protein p53/genetics , Bronchi/cytology , Bronchi/drug effects , Bronchi/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Tumor Suppressor Protein p53/metabolismABSTRACT
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes.
Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Exosomes/pathology , Lung Neoplasms/pathology , Mesoderm/pathology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Exosomes/drug effects , Exosomes/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mesoderm/drug effects , Mesoderm/metabolism , Tumor Cells, CulturedABSTRACT
Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein.