ABSTRACT
The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or ß-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and ß-carotene. We observed no change in secretion in any cell wall-altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Wall/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , beta Carotene/metabolismABSTRACT
Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Antiporters , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sorbic Acid , Synthetic BiologyABSTRACT
Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.
Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae , Benzyl Alcohol , Biotechnology , Escherichia coli , Membrane Transport Proteins , Organic ChemicalsABSTRACT
Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.
ABSTRACT
Digital microfluidics technology has immense potential for multiplexing biological processes, reducing reagents, and minimizing process time. However, biofouling of surfaces causes cross-contamination, slow droplet movement, and prolonged experiment time, hindering its full potential. Traditionally surfactants are used to combat this issue but can interfere with biological reactions leading to low efficiency. An alternative is the use of slippery liquid-infused porous surfaces (SLIPS), which do not interfere with the reactions and offer a solution to the biofouling problem. In this study, we compare Teflon surfaces with SLIPS to address the challenge of biofouling in Digital MicroFluidic (DMF) devices. More specifically, we demonstrate that SLIPS in an Electrowetting-on-Dielectric (EWOD)-based DMF device not only prevents biofouling but also enhances PCR efficiency, reducing reaction times and reagent consumption. These advancements eliminate the need for surfactants, which can interfere with biological reactions, thereby ensuring higher fidelity in PCR amplification. Our findings reveal that SLIPS facilitate faster droplet movement and maintain reaction integrity, showcasing their potential for high-throughput biological assays.
ABSTRACT
The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).
ABSTRACT
The transportome of Saccharomyces cerevisiae comprises approximately 340 membrane-bound proteins, of which very few are well-characterized. Elucidating transporter proteins' function is essential not only for understanding central cellular processes in metabolite exchange with the external milieu but also for optimizing the production of value-added compounds in microbial cell factories. Here, we describe the application of 13C-labeled stable isotopes and detection by targeted LC-MS/MS as a screening tool for identifying Saccharomyces cerevisiae metabolite transporters. We compare the transport assay's sensitivity, reproducibility, and accuracy in yeast transporter mutant cell lines and Xenopus oocytes. As proof of principle, we analyzed the transport profiles of five yeast amino acid transporters. We first cultured yeast transporter deletion or overexpression mutants on uniformly labeled 13C-glucose and then screened their ability to facilitate the uptake or export of an unlabeled pool of amino acids. Individual transporters were further studied by heterologous expression in Xenopus oocytes, followed by an uptake assay with 13C labeled yeast extract. Uptake assays in Xenopus oocytes showed higher reproducibility and accuracy. Although having lower accuracy, the results from S. cerevisiae indicated the system's potential for initial high-throughput screening for native metabolite transporters. We partially confirmed previously reported substrates for all five amino acid transporters. In addition, we propose broader substrate specificity for two of the transporter proteins. The method presented here demonstrates the application of a comprehensive screening platform for the knowledge expansion of the transporter-substrate relationship for native metabolites in S. cerevisiae.
ABSTRACT
Resveratrol is a phenolic compound with strong antioxidant activity, being promising for several applications in health, food, and cosmetics. It is generally extracted from plants or chemically synthesized, in both complex and not sustainable processes, but microbial biosynthesis of resveratrol can counter these drawbacks. In this work, resveratrol production by microbial biosynthesis from lignocellulosic materials was assessed. Three robust industrial Saccharomyces cerevisiae strains known for their thermotolerance and/or resistance to inhibitory compounds were identified as suitable hosts for de novo resveratrol production from glucose and ethanol. Through the CRISPR/Cas9 system, all industrial strains, and a laboratory one, were successfully engineered with the resveratrol biosynthetic pathway via the phenylalanine intermediate. All strains were further screened at 30 °C and 39 °C to evaluate thermotolerance, which is a key feature for Simultaneous Saccharification and Fermentation processes. Ethanol Red RBP showed the best performance at 39 °C, with more than 2.6-fold of resveratrol production in comparison with the other strains. This strain was then used to assess resveratrol production from glucose and ethanol. A maximum resveratrol titer of 187.07 ± 19.88 mg/L was attained from a medium with 2% glucose and 5% ethanol (w/v). Lastly, Ethanol Red RBP produced 151.65 ± 3.84 mg/L resveratrol from 2.95% of cellulose from hydrothermally pretreated Eucalyptus globulus wood, at 39 °C, in a Simultaneous Saccharification and Fermentation process. To the best of our knowledge, this is the first report of lignocellulosic resveratrol production, establishing grounds for the implementation of an integrated lignocellulose-to-resveratrol process in an industrial context.
Subject(s)
Eucalyptus/chemistry , Microorganisms, Genetically-Modified/metabolism , Resveratrol/metabolism , Saccharomyces cerevisiae/metabolism , Wood/chemistry , Microorganisms, Genetically-Modified/genetics , Saccharomyces cerevisiae/geneticsABSTRACT
The yeast Brettanomyces bruxellensis (syn. Dekkera bruxellensis) is an emerging and undesirable contaminant in industrial low-sugar ethanol fermentations that employ the yeast Saccharomyces cerevisiae. High-affinity glucose import in B. bruxellensis has been proposed to be the mechanism by which this yeast can outcompete S. cerevisiae. The present study describes the characterization of two B. bruxellensis genes (BHT1 and BHT3) believed to encode putative high-affinity glucose transporters. In vitro-generated transcripts of both genes as well as the S. cerevisiae HXT7 high-affinity glucose transporter were injected into Xenopus laevis oocytes and subsequent glucose uptake rates were assayed using 14C-labelled glucose. At 0.1 mM glucose, Bht1p was shown to transport glucose five times faster than Hxt7p. pH affected the rate of glucose transport by Bht1p and Bht3p, indicating an active glucose transport mechanism that involves proton symport. These results suggest a possible role for BHT1 and BHT3 in the competitive ability of B. bruxellensis.