Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 64(1): 148-162, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27642048

ABSTRACT

Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.


Subject(s)
Calcium Channels/metabolism , Cerebellum/metabolism , Corpus Striatum/metabolism , Hippocampus/metabolism , Metalloendopeptidases/genetics , Mitochondria/metabolism , Neurons/metabolism , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , ATPases Associated with Diverse Cellular Activities , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Death , Cerebellum/pathology , Corpus Striatum/pathology , Gene Expression Regulation , HEK293 Cells , Hippocampus/pathology , Homeostasis/genetics , Humans , Ion Transport , Metalloendopeptidases/deficiency , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurons/pathology , Protein Interaction Mapping , Signal Transduction
2.
EMBO Rep ; 17(12): 1844-1856, 2016 12.
Article in English | MEDLINE | ID: mdl-27737933

ABSTRACT

The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.


Subject(s)
Blood Proteins/metabolism , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , ATPases Associated with Diverse Cellular Activities , Blood Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Potential, Mitochondrial/physiology , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Metalloproteases/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Peptide Hydrolases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Kinases/genetics , Protein Kinases/metabolism , Proteolysis
3.
Hum Mutat ; 38(12): 1786-1795, 2017 12.
Article in English | MEDLINE | ID: mdl-28905505

ABSTRACT

Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl-tRNA synthases. Eukaryotic cells contain 17 mitochondria-specific aminoacyl-tRNA synthases. WARS2 encodes mitochondrial tryptophanyl-tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan-tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Genetic Variation , Intellectual Disability/genetics , Mitochondrial Diseases/genetics , Mitochondrial Encephalomyopathies/genetics , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/metabolism , Exome/genetics , Female , Humans , Infant, Newborn , Intellectual Disability/enzymology , Male , Mitochondrial Diseases/enzymology , Mitochondrial Encephalomyopathies/enzymology , Mitochondrial Encephalomyopathies/pathology , Models, Molecular , Mutation , Pedigree , Phenotype , Pregnancy , Sequence Alignment , Exome Sequencing
4.
Biochim Biophys Acta ; 1863(1): 91-101, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26477565

ABSTRACT

We have analyzed the distribution of mitochondrial contact site and cristae organizing system (MICOS) complex proteins and mitochondrial intermembrane space bridging complex (MIB) proteins over (sub)complexes and over species. The MICOS proteins are associated with the formation and maintenance of mitochondrial cristae. Indeed, the presence of MICOS genes in genomes correlates well with the presence of cristae: all cristae containing species have at least one MICOS gene and cristae-less species have none. Mic10 is the most widespread MICOS gene, while Mic60 appears be the oldest one, as it originates in the ancestors of mitochondria, the proteobacteria. In proteobacteria the gene occurs in clusters with genes involved in heme synthesis while the protein has been observed in intracellular membranes of the alphaproteobacterium Rhodobacter sphaeroides. In contrast, Mic23 and Mic27 appear to be the youngest MICOS proteins, as they only occur in opisthokonts. The remaining MICOS proteins, Mic10, Mic19, Mic25 and Mic12, the latter we show to be orthologous to human C19orf70/QIL1, trace back to the root of the eukaryotes. Of the remaining MIB proteins, also DNAJC11 shows a high correlation with the presence of cristae. In mitochondrial protein complexome profiles, the MIB complex occurs as a defined complex and as separate subcomplexes, potentially reflecting various assembly stages. We find three main forms of the complex: A) The MICOS complex, containing all the MICOS proteins, B) a membrane bridging subcomplex, containing in addition SAMM50, MTX2 and the previously uncharacterized MTX3, and C) the complete MIB complex containing in addition DNAJC11 and MTX1.


Subject(s)
Evolution, Molecular , Mitochondrial Proteins/genetics , Multiprotein Complexes/genetics , Cell Line, Tumor , Humans
5.
J Ultrasound Med ; 34(7): 1227-36, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26112625

ABSTRACT

OBJECTIVES: To enhance the regional antitumor activity of the vascular-targeting agent truncated tissue factor (tTF)-NGR by combining the therapy with low-energy ultrasound (US) treatment. METHODS: For the in vitro US exposure of human umbilical vein endothelial cells (HUVECs), cells were put in the focus of a US transducer. For analysis of the US-induced phosphatidylserine (PS) surface concentration on HUVECs, flow cytometry was used. To demonstrate the differences in the procoagulatory efficacy of TF-derivative tTF-NGR on binding to HUVECs with a low versus high surface concentration of PS, we performed factor X activation assays. For low-energy US pretreatment, HT1080 fibrosarcoma xenotransplant-bearing nude mice were treated by tumor-regional US-mediated stimulation (ie, destruction) of microbubbles. The therapy cohorts received the tumor vessel-infarcting tTF-NGR protein with or without US pretreatment (5 minutes after US stimulation via intraperitoneal injection on 3 consecutive days). RESULTS: Combination therapy experiments with xenotransplant-bearing nude mice significantly increased the antitumor activity of tTF-NGR by regional low-energy US destruction of vascular microbubbles in tumor vessels shortly before application of tTF-NGR (P < .05). Mechanistic studies proved the upregulation of anionic PS on the outer leaflet of the lipid bilayer of endothelial cell membranes by low-energy US and a consecutive higher potential of these preapoptotic endothelial cells to activate coagulation via tTF-NGR and coagulation factor X as being a basis for this synergistic activity. CONCLUSIONS: Combining retargeted tTF to tumor vessels with proapoptotic stimuli for the tumor vascular endothelium increases the antitumor effects of tumor vascular infarction. Ultrasound treatment may thus be useful in this respect for regional tumor therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Fibrosarcoma/therapy , Infarction/etiology , Thromboplastin/pharmacology , Ultrasonic Therapy , Animals , Cell Line, Tumor , Disease Models, Animal , Endothelium, Vascular , Female , Fibrosarcoma/blood supply , Fibrosarcoma/drug therapy , Flow Cytometry , Humans , Mice , Mice, Nude , Microbubbles , Neovascularization, Pathologic/prevention & control
6.
FEBS J ; 275(13): 3438-53, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18537826

ABSTRACT

Onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is the second leading cause of blindness due to infectious diseases. The protective role of the omega-class glutathione transferase 3 from O. volvulus (OvGST3) against intracellular and environmental reactive oxygen species has been described previously. In the present study, we continue our investigation of the highly stress-responsive OvGST3. Alternative splicing of two exons and one intron retention generates five different transcript isoforms that possess a spliced leader at their 5'-end, indicating that the mechanism of mature mRNA production involves alternative-, cis- and trans-splicing processes. Interestingly, the first two exons of the ovgst3 gene encode a signal peptide before sequence identity to other omega-class glutathione transferases begins. Only the recombinant expression of the isoform that encodes the longest deduced amino acid sequence (OvGST3/5) was successful, with the purified enzyme displaying modest thiol oxidoreductase activity. Significant IgG1 and IgG4 responses against recombinantly expressed OvGST3/5 were detected in sera from patients with the generalized as well as the chronic hyperreactive form of onchocerciasis, indicating exposure of the secreted protein to the human host's immune system and its immunogenicity. Immunohistological localization studies performed at light and electron microscopy levels support the extracellular localization of the protein. Intensive labeling of the OvGST3 was observed in the egg shell at the morula stage of the embryo, indicating extremely defined, stage-specific expression for a short transient period only.


Subject(s)
Gene Expression Regulation , Glutathione Transferase/physiology , Onchocerca volvulus/enzymology , Amino Acid Sequence , Animals , Exons , Genome , Glutathione Transferase/metabolism , Humans , Models, Biological , Molecular Conformation , Molecular Sequence Data , Onchocerciasis/parasitology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
7.
J Control Release ; 195: 130-7, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-24979212

ABSTRACT

Localized gene delivery has many potential clinical applications. However, the nucleic acids (e.g. pDNA and siRNA) are incapable of passively crossing the endothelium, cell membranes and other biological barriers which must be crossed to reach their intracellular targets. A possible solution is the use of ultrasound to burst circulating microbubbles inducing transient permeabilization of surrounding tissues which mediates nucleic acid extravasation and cellular uptake. In this study we report on an optimization of the ultrasound gene delivery technique. Naked pDNA (200 µg) encoding luciferase and SonoVue® microbubbles were co-injected intravenously in mice. The hindlimb skeletal muscles were exposed to ultrasound from a non-focused transducer (1 MHz, 1.25 MPa, PRI 30s) and injection protocols and total amounts as well as ultrasound parameters were systemically varied. Gene expression was quantified relative to a control using a bioluminescence camera system at day 7 after sonication. Bioluminescence ratios in sonicated/control muscles of up to 101× were obtained. In conclusion, we were able to specifically deliver genetic material to the selected skeletal muscles and overall, the use of bolus injections and high microbubble numbers resulted in increased gene expression reflected by stronger bioluminescence signals. Based on our data, bolus injections seem to be required in order to achieve transient highly concentrated levels of nucleic acids and microbubbles at the tissue of interest which upon ultrasound exposure should lead to increased levels of gene delivery. Thus, ultrasound mediated gene delivery is a promising technique for the clinical translation of localized drug delivery.


Subject(s)
DNA/administration & dosage , Gene Transfer Techniques , Muscle, Skeletal/metabolism , Animals , Female , Infusions, Intravenous , Injections , Luciferases/genetics , Luminescence , Mice , Microbubbles , Muscle, Skeletal/pathology , Plasmids , Sonication
SELECTION OF CITATIONS
SEARCH DETAIL