Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39196745

ABSTRACT

Recent studies have identified microvascular invasion (MVI) as the most vital independent biomarker associated with early tumor recurrence. With advancements in medical technology, several computational methods have been developed to predict preoperative MVI using diverse medical images. These existing methods rely on human experience, attribute selection or clinical trial testing, which is often time-consuming and labor-intensive. Leveraging the advantages of deep learning, this study presents a novel end-to-end algorithm for predicting MVI prior to surgery. We devised a series of data preprocessing strategies to fully extract multi-view features from the data while preserving peritumoral information. Notably, a new multi-branch deep fused feature algorithm based on ResNet (DFFResNet) is introduced, which combines Magnetic Resonance Images (MRI) from different sequences to enhance information complementarity and integration. We conducted prediction experiments on a dataset from the Radiology Department of the First Hospital of Lanzhou University, comprising 117 individuals and seven MRI sequences. The model was trained on 80% of the data using 10-fold cross-validation, and the remaining 20% were used for testing. This evaluation was processed in two cases: CROI, containing samples with a complete region of interest (ROI), and PROI, containing samples with a partial ROI region. The robustness results from repeated experiments at both image and patient levels demonstrate the superior performance and improved generalization of the proposed method compared to alternative models. Our approach yields highly competitive prediction results even when the ROI region outline is incomplete, offering a novel and effective multi-sequence fused strategy for predicting preoperative MVI.

2.
Front Microbiol ; 13: 963704, 2022.
Article in English | MEDLINE | ID: mdl-36267181

ABSTRACT

Many disease-related genes have been found to be associated with cancer diagnosis, which is useful for understanding the pathophysiology of cancer, generating targeted drugs, and developing new diagnostic and treatment techniques. With the development of the pan-cancer project and the ongoing expansion of sequencing technology, many scientists are focusing on mining common genes from The Cancer Genome Atlas (TCGA) across various cancer types. In this study, we attempted to infer pan-cancer associated genes by examining the microbial model organism Saccharomyces Cerevisiae (Yeast) by homology matching, which was motivated by the benefits of reverse genetics. First, a background network of protein-protein interactions and a pathogenic gene set involving several cancer types in humans and yeast were created. The homology between the human gene and yeast gene was then discovered by homology matching, and its interaction sub-network was obtained. This was undertaken following the principle that the homologous genes of the common ancestor may have similarities in expression. Then, using bidirectional long short-term memory (BiLSTM) in combination with adaptive integration of heterogeneous information, we further explored the topological characteristics of the yeast protein interaction network and presented a node representation score to evaluate the node ability in graphs. Finally, homologous mapping for human genes matched the important genes identified by ensemble classifiers for yeast, which may be thought of as genes connected to all types of cancer. One way to assess the performance of the BiLSTM model is through experiments on the database. On the other hand, enrichment analysis, survival analysis, and other outcomes can be used to confirm the biological importance of the prediction results. You may access the whole experimental protocols and programs at https://github.com/zhuyuan-cug/AI-BiLSTM/tree/master.

SELECTION OF CITATIONS
SEARCH DETAIL