Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Gastroenterol ; 23(1): 89, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973651

ABSTRACT

BACKGROUND: This study aims to construct and verify a nomogram model for microvascular invasion (MVI) based on hepatocellular carcinoma (HCC) tumor characteristics and differential protein expressions, and explore the clinical application value of the prediction model. METHODS: The clinicopathological data of 200 HCC patients were collected and randomly divided into training set and validation set according to the ratio of 7:3. The correlation between MVI occurrence and primary disease, age, gender, tumor size, tumor stage, and immunohistochemical characteristics of 13 proteins, including GPC3, CK19 and vimentin, were statistically analyzed. Univariate and multivariate analyzes identified risk factors and independent risk factors, respectively. A nomogram model that can be used to predict the presence of MVI was subsequently constructed. Then, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were conducted to assess the performance of the model. RESULTS: Multivariate logistic regression analysis indicated that tumor size, GPC3, P53, RRM1, BRCA1, and ARG were independent risk factors for MVI. A nomogram was constructed based on the above six predictors. ROC curve, calibration, and DCA analysis demonstrated the good performance and the clinical application potential of the nomogram model. CONCLUSIONS: The predictive model constructed based on the clinical characteristics of HCC tumors and differential protein expression patterns could be helpful to improve the accuracy of MVI diagnosis in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Invasiveness , Nomograms , Risk Factors , Retrospective Studies , Glypicans
2.
J Int Med Res ; 51(3): 3000605231161204, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36974888

ABSTRACT

OBJECTIVE: To develop a nomogram that discriminates lung cancer from benign lung nodules through metabolic profiling. METHODS: This was a retrospective cohort study that recruited 848 participants who were randomized into training and validation sets at a 7:3 ratio. Clinical characteristics and metabolic profiles were retrieved. Variables in the training set with statistically significant differences were selected for further least absolute shrinkage and selection operator (LASSO) regression. The nomogram was built from 13 variables identified by stepwise regression analysis. Receiver operating characteristic, calibration curve, and decision curve analyses were conducted to evaluate the performance of the nomogram by internal validation. RESULTS: Thirteen variables were selected through LASSO regression to build the nomogram: age, sex, ornithine, tyrosine, glutamine, valine, serine, asparagine, arginine, methylmalonylcarnitine, tetradecenoylcarnitine, 3-hydroxyisovaleryl carnitine/2-methyl-3-hydroxybutyrylcarnitine, and hydroxybutyrylcarnitine. The nomogram had good discrimination for the training set, with an area under the curve of 0.836 (95% confidence interval: 0.830-0.890). Moreover, the calibration curve with 1000 bootstrap resamples showed that the predicted value coincided well with the actual value. Decision curve analysis described a net benefit superior to baseline within the threshold probability range of 15% to 93%. CONCLUSIONS: The nomogram constructed from metabolic profiling accurately predicted risk of lung cancer.


Subject(s)
Lung Neoplasms , Nomograms , Humans , Retrospective Studies , Lung Neoplasms/diagnosis , Esters , Lung
SELECTION OF CITATIONS
SEARCH DETAIL