Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 36(8): 2798-2817, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38593056

ABSTRACT

Little is known about the factors regulating carotenoid biosynthesis in roots. In this study, we characterized DCAR_032551, the candidate gene of the Y locus responsible for the transition of root color from ancestral white to yellow during carrot (Daucus carota) domestication. We show that DCAR_032551 encodes a REPRESSOR OF PHOTOSYNTHETIC GENES (RPGE) protein, named DcRPGE1. DcRPGE1 from wild carrot (DcRPGE1W) is a repressor of carotenoid biosynthesis. Specifically, DcRPGE1W physically interacts with DcAPRR2, an ARABIDOPSIS PSEUDO-RESPONSE REGULATOR2 (APRR2)-like transcription factor. Through this interaction, DcRPGE1W suppresses DcAPRR2-mediated transcriptional activation of the key carotenogenic genes phytoene synthase 1 (DcPSY1), DcPSY2, and lycopene ε-cyclase (DcLCYE), which strongly decreases carotenoid biosynthesis. We also demonstrate that the DcRPGE1W-DcAPRR2 interaction prevents DcAPRR2 from binding to the RGATTY elements in the promoter regions of DcPSY1, DcPSY2, and DcLCYE. Additionally, we identified a mutation in the DcRPGE1 coding region of yellow and orange carrots that leads to the generation of alternatively spliced transcripts encoding truncated DcRPGE1 proteins unable to interact with DcAPRR2, thereby failing to suppress carotenoid biosynthesis. These findings provide insights into the transcriptional regulation of carotenoid biosynthesis and offer potential target genes for enhancing carotenoid accumulation in crop plants.


Subject(s)
Carotenoids , Daucus carota , Gene Expression Regulation, Plant , Plant Proteins , Daucus carota/genetics , Daucus carota/metabolism , Carotenoids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Photosynthesis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
2.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232281

ABSTRACT

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Subject(s)
Adenosine Triphosphate , Methane , Methane/metabolism , Electron Transport , Adenosine Triphosphate/metabolism , Energy Metabolism , Biological Transport , Methanosarcina/metabolism
3.
Chem Rev ; 124(5): 2352-2418, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38408190

ABSTRACT

This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.

4.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323812

ABSTRACT

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Subject(s)
Capsid Proteins , Capsid , DNA, Single-Stranded , DNA, Viral , DNA-Binding Proteins , Dependovirus , Human bocavirus , Viral Proteins , Humans , Capsid/metabolism , Capsid Proteins/biosynthesis , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/genetics , Dependovirus/growth & development , Dependovirus/metabolism , DNA, Single-Stranded/biosynthesis , DNA, Single-Stranded/metabolism , DNA, Viral/biosynthesis , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , Human bocavirus/genetics , Human bocavirus/metabolism , Kinetics , Mutagenesis, Site-Directed , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Domains , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
5.
Nano Lett ; 24(2): 632-639, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38175932

ABSTRACT

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.

6.
Genes Chromosomes Cancer ; 63(6): e23251, 2024 06.
Article in English | MEDLINE | ID: mdl-38884198

ABSTRACT

Erythroid sarcoma (ES) is exceedingly rare in the pediatric population with only a handful of reports of de novo cases, mostly occurring in the central nervous system (CNS) or orbit. It is clinically and pathologically challenging and can masquerade as a nonhematopoietic small round blue cell tumor. Clinical presentation of ES without bone marrow involvement makes diagnosis particularly difficult. We describe a 22-month-old female with ES who presented with a 2-cm mass involving the left parotid region and CNS. The presence of crush/fixation artifact from the initial biopsy made definitive classification of this highly proliferative and malignant neoplasm challenging despite an extensive immunohistochemical workup. Molecular studies including RNA-sequencing revealed a NFIA::CBFA2T3 fusion. This fusion has been identified in several cases of de novo acute erythroid leukemia (AEL) and gene expression analysis comparing this case to other AELs revealed a similar transcriptional profile. Given the diagnostically challenging nature of this tumor, clinical RNA-sequencing was essential for establishing a diagnosis.


Subject(s)
NFI Transcription Factors , Humans , Female , Infant , NFI Transcription Factors/genetics , Oncogene Proteins, Fusion/genetics , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/diagnosis , Repressor Proteins
7.
Article in English | MEDLINE | ID: mdl-38864759

ABSTRACT

Lamellar body (LB) is a tissue-specific lysosome-related organelle in type II alveolar cells, which is the main site for the synthesis, storage and secretion of pulmonary surfactants. Defects in pulmonary surfactants lead to a variety of respiratory and immune-related disorders. LB biogenesis is closely related to its function, but the underlying regulatory mechanism is largely unclear. Here, we found that deficiency of HPS6, a subunit of BLOC-2 (biogenesis of lysosome-related organelles complex-2), led to the reduction of the steady-state level of V-ATPase and the increase of luminal pH of LB. Furthermore, we observed increased LB size, accumulated surfactant proteins, and altered lipid profiling of lung tissue and bronchoalveolar lavage fluid due to HPS6 deficiency. These findings suggest that HPS6 regulates the distribution of V-ATPase on LBs to maintain its luminal acidity and LB homeostasis. This may provide new insights into the LB pathology.

8.
BMC Genomics ; 25(1): 41, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191319

ABSTRACT

BACKGROUND: Mitochondrial genome abnormalities can lead to mitochondrial dysfunction, which in turn affects cellular biology and is closely associated with the development of various diseases. The demand for mitochondrial DNA (mtDNA) sequencing has been increasing, and Illumina and MGI are two commonly used sequencing platforms for capture-based mtDNA sequencing. However, there is currently no systematic comparison of mtDNA sequencing performance between these two platforms. To address this gap, we compared the performance of capture-based mtDNA sequencing between Illumina's NovaSeq 6000 and MGI's DNBSEQ-T7 using tissue, peripheral blood mononuclear cell (PBMC), formalin-fixed paraffin-embedded (FFPE) tissue, plasma, and urine samples. RESULTS: Our analysis indicated a high degree of consistency between the two platforms in terms of sequencing quality, GC content, and coverage. In terms of data output, DNBSEQ-T7 showed higher rates of clean data and duplication compared to NovaSeq 6000. Conversely, the amount of mtDNA data obtained by per gigabyte sequencing data was significantly lower in DNBSEQ-T7 compared to NovaSeq 6000. In terms of detection mtDNA copy number, both platforms exhibited good consistency in all sample types. When it comes to detection of mtDNA mutations in tissue, FFPE, and PBMC samples, the two platforms also showed good consistency. However, when detecting mtDNA mutations in plasma and urine samples, significant differenceof themutation number detected was observed between the two platforms. For mtDNA sequencing of plasma and urine samples, a wider range of DNA fragment size distribution was found in NovaSeq 6000 when compared to DNBSEQ-T7. Additionally, two platforms exhibited different characteristics of mtDNA fragment end preference. CONCLUSIONS: In summary, the two platforms generally showed good consistency in capture-based mtDNA sequencing. However, it is necessary to consider the data preferences generated by two sequencing platforms when plasma and urine samples were analyzed.


Subject(s)
DNA, Mitochondrial , Leukocytes, Mononuclear , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Mitochondria , Mutation
9.
J Am Chem Soc ; 146(28): 18958-18966, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952302

ABSTRACT

Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and ß-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.

10.
J Am Chem Soc ; 146(13): 9302-9310, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506150

ABSTRACT

Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.

11.
J Am Chem Soc ; 146(5): 3293-3302, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277694

ABSTRACT

Aqueous redox flow batteries (ARFBs) hold great potential for large-scale energy storage. Recently, research on aqueous flow batteries has shifted toward water-soluble organic molecules with redox capabilities to reduce the use of mineral resources. The chemical and electrochemical stabilities of organic compounds are heavily influenced by their functional groups and reaction sites. In this study, we present a low-cost synthesis of the O-alkyl-carboxylate-functionalized derivatives of 2,3-dihydroxyphenazine, namely, phenazine-(2,3-diyl) dioxy dibutyric acid (DBEP) and phenazine-(2,3-diyl)dioxy diacetic acid (DAEP), which serve as negolytes and exhibit good reversibility and high redox kinetics. The evidence is provided to clarify the capacity degradation mechanisms of DAEP and DBEP by a series of comprehensive characterizations. Similar to anthraquinones functionalized with alkyl chains, the main degradation mechanism of DAEP modified with acetic acid is due to side chain loss. Longer side chains are more stable and can withstand long-term electrochemical reactions. DBEP modified with butyric acid exhibits superior chemical and electrochemical stability. Our results demonstrate that rational molecular design and suitable membranes, such as the alkaline ARFBs based on DBEP negolyte, potassium ferrocyanide (K4Fe(CN)6) posolyte, and custom sulfonated poly(ether ether ketone) membrane, can deliver a high open-circuit voltage of 1.17 V and high capacity retention of 99.997% per cycle for over 1000 cycles at 50 mA cm-2. This study highlights the importance of not only considering the modification position of the molecules but also focusing on the influence of various side chains on the redox core's stability toward sustainable grid-scale energy storage applications.

12.
J Am Chem Soc ; 146(29): 20439-20448, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38993055

ABSTRACT

The electrocatalytic nitrate reduction reaction (NITRR) holds great promise for purifying wastewater and producing valuable ammonia (NH3). However, the lack of efficient electrocatalysts has impeded the achievement of highly selective NH3 synthesis from the NITRR. In this study, we report the design and synthesis of two polynuclear Co-cluster-based coordination polymers, {[Co2(TCPPDA)(H2O)5]·(H2O)9(DMF)} and {Co1.5(TCPPDA)[(CH3)2NH2]·(H2O)6(DMF)2} (namely, NJUZ-2 and NJUZ-3), which possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments. Benefitting from their intriguing multicore metal-organic coordination framework structures, NJUZ-2 and NJUZ-3 exhibit remarkable catalytic activities for the NITRR. At a potential of -0.8 V (vs. RHE) in an H-type cell, they achieve an optimal Faradaic efficiency of approximately 98.5% and high long-term durability for selective NH3 production. Furthermore, the electrocatalytic performance is well maintained even under strongly acidic conditions. When operated under an industrially relevant current density of 469.9 mA cm-2 in a flow cell, a high NH3 yield rate of up to 3370.6 mmol h-1 g-1cat. was observed at -0.5 V (vs. RHE), which is 20.1-fold higher than that obtained in H-type cells under the same conditions. Extensive experimental analyses, in combination with theoretical computations, reveal that the great enhancement of the NITRR activity is attributed to the preferential adsorption of NO3- and the reduction in energy input required for the hydrogenation of *NO3 and *NO2 intermediates.

13.
J Am Chem Soc ; 146(31): 21208-21213, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046226

ABSTRACT

Methane is one of the most potent greenhouse gases; developing technology for its abatement is essential for combating climate change. Copper zeolites can activate methane at low temperatures and pressures, demonstrating promise for this technology. However, a barrier to industrial implementation is the inability to recycle the Cu(II) active site. Anaerobic active site regeneration has been reported for copper-loaded mordenite, where it is proposed that water oxidizes Cu(I) formed from the methane reaction, producing H2 gas as a byproduct. However, this result has been met with skepticism given the overall reaction is thermodynamically unfavorable. In this study, we use X-ray absorption and electron paramagnetic resonance spectroscopies to study the role of water in copper zeolite methane oxidation. We find that water does not oxidize Cu(I) to Cu(II) in CH4-reacted Cu-MOR. Further, using isotope label mass spectrometry, we detail an alternate source of the hydrogen byproduct. We uncover that, although water does not oxidize Cu(I), it has the potential to facilitate low temperature methane abatement through promotion of product decomposition to carbon dioxide and H2.

14.
J Am Chem Soc ; 146(9): 6061-6071, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38385349

ABSTRACT

The highly reactive binuclear [Cu2O]2+ active site in copper zeolites activates the inert C-H bond of methane at low temperatures, offering a potential solution to reduce methane flaring and mitigate atmospheric methane levels. While substantial progress has been made in understanding the activation of methane by this core, one critical aspect, the active site's spin, has remained undetermined. In this study, we use variable-temperature, variable-field magnetic circular dichroism spectroscopy to define the ground state spin of the [Cu2O]2+ active sites in Cu-CHA and Cu-MFI. This novel approach allows for site-selective determination of the magnetic exchange coupling between the two copper centers of specific [Cu2O]2+ cores in a heterogeneous mixture, circumventing the drawbacks of bulk magnetic techniques. These experimental findings are coupled to density functional theory calculations to elucidate magnetostructural correlations in copper zeolites that are different from those of homogeneous binuclear Cu(II) complexes. The different spin states for the [Cu2O]2+ cores have different reactivities governed by how methane approaches the active site. This introduces a new understanding of zeolite topological control on active site reactivity.

15.
J Am Chem Soc ; 146(10): 7018-7028, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412508

ABSTRACT

Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl2·6H2O, acetamide, and urea in a precisely balanced 1:1:7 molar ratio. This formulation was optimized by leveraging competitive solvation effects between Mg2+ ions and two organic components. The full batteries based on this ternary eutectic electrolyte, Mn-doped sodium vanadate (Mn-NVO) anode, and copper hexacyanoferrate cathode exhibited an elevated voltage plateau and high rate capability and showcased stable cycling performance. Ex-situ characterizations unveiled the Mg2+ storage mechanism of Mn-NVO involving initial extraction of Na+ followed by subsequent Mg2+ intercalation/deintercalation. Detailed spectroscopic analyses illuminated the formation of a pivotal solid-electrolyte interphase on the anode surface. Moreover, the solid-electrolyte interphase demonstrated a dynamic adsorption/desorption behavior, referred to as the "breathing effect", which substantially mitigated undesired dissolution and side reactions of electrode materials. These findings underscore the crucial role of rational electrolyte design in fostering the development of a favorable solid-electrolyte interphase that can significantly enhance compatibility between electrode materials and electrolytes, thus propelling advancements in aqueous multivalent-ion batteries.

16.
Anal Chem ; 96(14): 5357-5362, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38554076

ABSTRACT

High-throughput mass spectrometry (MS) has witnessed rapid advancements and has found extensive applications across various disciplines. It enables the fast and accurate analysis of large sample sets, delivering a 10-fold or greater enhancement in analytical throughput when compared to conventional LC-MS methods. However, the signal duration in these high-throughput MS technologies is typically confined to a narrow range, presenting challenges for workflows demanding prolonged signal durations. In this study, we introduce a method that enables precise modulation of the signal duration on an acoustic ejection mass spectrometry (AEMS) system while ensuring high signal reproducibility. This flexibility allows for simultaneous and precise analysis of a significantly greater number of MS/MS transitions in high-throughput MS environments. Additionally, it offers a unique approach for parameter optimization and method development with minimal sample volume requirements. This advancement enhances the efficiency of MS-based analyses across diverse applications and facilitates broader utilization of MS technologies in high-throughput settings, including data-dependent acquisition (DDA) and data-independent acquisition (DIA).

17.
Anal Chem ; 96(22): 8981-8989, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38758609

ABSTRACT

Addressing the challenge of understanding how cellular interfaces dictate the mechanical resilience and adhesion of archaeal cells, this study demonstrates the role of the surface layer (S-layer) in methanogenic archaea. Using a combination of atomic force microscopy and single-cell force spectroscopy, we quantified the impact of S-layer disruption on cell morphology, mechanical properties, and adhesion capabilities. We demonstrate that the S-layer is crucial for maintaining cell morphology, where its removal induces significant cellular enlargement and deformation. Mechanical stability of the cell surface is substantially compromised upon S-layer disruption, as evidenced by decreased Young's modulus values. Adhesion experiments revealed that the S-layer primarily facilitates hydrophobic interactions, which are significantly reduced after its removal, affecting both cell-cell and cell-bubble interactions. Our findings illuminate the S-layer's fundamental role in methanogen architecture and provide a chemical understanding of archaeal cell surfaces, with implications for enhancing methane production in biotechnological applications.


Subject(s)
Microscopy, Atomic Force , Single-Cell Analysis , Surface Properties , Archaea/chemistry , Archaea/metabolism , Cell Adhesion , Hydrophobic and Hydrophilic Interactions
18.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mice , Liver/metabolism , Liver/drug effects , Mannose/pharmacology , Mannose/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
19.
BMC Plant Biol ; 24(1): 188, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486139

ABSTRACT

BACKGROUND: Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS: SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS: This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism
20.
BMC Plant Biol ; 24(1): 496, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831278

ABSTRACT

BACKGROUND: Monosaccharide transporter (MST) family, as a carrier for monosaccharide transport, plays an important role in carbon partitioning and widely involves in plant growth and development, stress response, and signaling transduction. However, little information on the MST family genes is reported in maize (Zea mays), especially in response to abiotic stresses. In this study, the genome-wide identification of MST family genes was performed in maize. RESULT: A total of sixty-six putative members of MST gene family were identified and divided into seven subfamilies (including SPT, PMT, VGT, INT, pGlcT, TMT, and ERD) using bioinformatics approaches, and gene information, phylogenetic tree, chromosomal location, gene structure, motif composition, and cis-acting elements were investigated. Eight tandem and twelve segmental duplication events were identified, which played an important role in the expansion of the ZmMST family. Synteny analysis revealed the evolutionary features of MST genes in three gramineous crop species. The expression analysis indicated that most of the PMT, VGT, and ERD subfamilies members responded to osmotic and cadmium stresses, and some of them were regulated by ABA signaling, while only a few members of other subfamilies responded to stresses. In addition, only five genes were induced by NaCl stress in MST family. CONCLUSION: These results serve to understand the evolutionary relationships of the ZmMST family genes and supply some insight into the processes of monosaccharide transport and carbon partitioning on the balance between plant growth and development and stress response in maize.


Subject(s)
Monosaccharide Transport Proteins , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Stress, Physiological/genetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant
SELECTION OF CITATIONS
SEARCH DETAIL