Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175296

ABSTRACT

The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 µA mM-1 cm-2) in a wide range of 0.1~800 µM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.

2.
Heliyon ; 10(1): e23893, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234918

ABSTRACT

Coluria longifolia Maxim (C. longifolia) is a Chinese folk medication commonly used to treat arthritis and joint pain. Literatures have reported that C. longifolia has significant anti-inflammatory, analgesic and antipyretic effects. The aim of this research was to assay the effective fractions of C. longifolia (EFCL) against rheumatoid arthritis (RA) and to elucidate its anti-RA mechanism on a preliminary basis. The rat model of collagen-induced arthritis (CIA) was established. The therapeutic effects of different fractions in vivo were evaluated by body weight changes, a foot swelling score, inflammatory factors and histopathological examination. The mechanism of EFCL was investigated by activity of oxidative stress related enzyme, qPCR and Western blotting tests. In vivo results showed that total extraction (TE) and n-butanol fraction (NF) could significantly alleviate the symptoms of RA, decrease the levels of IL-6 and TNF-α (P < 0.01), and improve histopathological injury. The mechanism study showed that SOD level was significantly increased with MDA level decreased in the NF group. The upregulated proteins and mRNA expression levels of Nrf2, HO1 and NQO1 after TE and NF administration suggested that the anti-arthritic effect may be related to the Nrf2 signaling pathway and downstream HO1 and NQO1. In conclusion, this study confirmed that C. longifolia is capable of treating RA with NF as the main effective fraction. Its anti-RA action may be associated with Nrf2 signaling pathway and downstream HO1 and NQO1.

3.
Heliyon ; 10(2): e24388, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298688

ABSTRACT

To examine the impact of ginger volatile oil (GVO) on the growth of MDA-MB-231 breast cancer cells in the presence of bisphenol A (BPA) by modulating the diversity of gut microbiota. METHODS: MDA-MB-231 breast cancer cells were injected subcutaneously into the right armpit of female BALB/c Nude (nu/nu) mice to create a triple negative breast cancer model. Thirty nude mice were randomly divided into 5 groups: control group (distilled water every day), BPA control group (distilled PEG-400+ DMSO + cyclodextrin every day), BPA + GVO (0.25 mL/kg) group, BPA + GVO (0.5 mL/kg) group, BPA + GVO (1 mL/kg) group, 6 mice in each group; The drug was given by gavage once a day for 4 weeks. At the end of the experiment, the changes of tumor mass and tumor volume were observed and compared in 5 groups of tumor-bearing mice. High-throughput sequencing (16S rRNA) was used to detect the changes of gut microflora in each group. RESULTS: The volume and weight of breast cancer decreased in the low, medium and high dose groups of GVO. Among them, the difference between the high-dose group and the BPA group reached a significant level (P < 0.05). The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO. In the tumor control group, the ratio of Firmicutes(F) and Bacteroidea(B) respectively was 0.10:0.79 at the phylum level, while the ratio of BPA group further decreased (0.04:0.88). After feeding GVO, the number of Firmicutes and Bacteroidea increased, the F/B ratio increased, and the level of Lactobacillus and alistipes increased. In the BPA and GVO treatment group, the predominant gut microflora functions are cell membrane biogenesis, carbohydrate transport and metabolism. This is followed by amino acid transport and metabolism, and transcription function. After GVO administration, the Gram-positive bacteria (G+) ratio had an increasing trend and the Gram-negative bacteria (G-)ratio had a decreasing trend. CONCLUSION: The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO.

4.
Oncol Lett ; 25(5): 195, 2023 May.
Article in English | MEDLINE | ID: mdl-37113393

ABSTRACT

To investigate the potential mechanism of ginger in the treatment of triple-negative breast cancer (TNBC) based on network pharmacology, molecular docking and in vitro cell experiments. The Traditional Chinese Medicine Systems Pharmacology Database And Analysis Platform, the Bioinformatics Analysis Tool For Molecular Mechanism Of Traditional Chinese Medicine and the HERB database and literature search were used to search for the main active compounds of ginger. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to predict the possible molecular mechanism and signaling pathway of ginger in the treatment of triple negative breast cancer. The key core genes of ginger in the treatment of triple negative breast cancer were docked with the active ingredients of ginger on the Autodock platform, and the mechanism of ginger on triple negative breast cancer was further verified by in vitro cell experiments. As a result, 10 effective components, 27 potential targets and 10 Protein-Protein Interaction core genes were predicted in the treatment of triple negative breast cancer with ginger, involving 287 biological processes, 18 cellular components and 38 molecular functions. Ginger regulated the proliferation, migration and apoptosis of triple negative breast cancer cells by regulating TNF, IL-17, FoxO, MAPK, PI3K/AKT and other signaling pathways. The results of molecular docking showed that the lowest binding potential energy between dihydrocapsaicin (DHC) and EGFR protein was -7.70 kcal·mol-1, followed by that between 6-gingerol and EGFR protein was -7.30 kcal·mol-1 and that between DHC and CASP3 protein was -7.20 kcal·mol-1. In vitro cell experiments showed that ginger could inhibit the proliferation and migration of TNBC MDA-MB-231 cells, increase the mRNA expression of Caspase family CASP9 and the protein expression of CASP3 and BAX. Overall, based on the combination of network pharmacology and in vitro cell experiments, ginger has the characteristics of multi-target in the treatment of TNBC, which may play a regulatory role through the PI3K/AKT family. It provides a reference for the drug development of ginger and the clinical treatment of triple negative breast cancer.

5.
Heliyon ; 9(7): e17534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456047

ABSTRACT

The aim of this research is to investigate lipid-lowering influence of dietary ginger (Zingier officinales Rocs) polysaccharides (GPS) on hyperlipidemia rats. Rat models with hyperlipidemia was established by high-fat food diet (HFD). Comparing to GP-negative model group, GPS attenuated several effects of HFD feeding, including the levels of blood lipid biochemistry, serum inflammatory markers (tumor necrosis factor TNF-a, interleukin IL-6), antioxidant capacity (superoxide dismutase SOD, glutathione peroxidase GSH-Px, total antioxidant capacity T-AOC, propylene dialdehyde MDA), uric acid and immune index. 16 S rDNA gene sequencing of fecal samples showed that GPS increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes; This changes in microbial community structure can help prevent diet-induced metabolic disease. These results suggest that GPs may act on the gut, changing the structure of the gut microbial community, thereby reducing intestinal and systemic inflammation, thus improved metabolic outcomes.

6.
Anal Methods ; 13(40): 4747-4755, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34559169

ABSTRACT

Eu3+-Doped nanoceria (Eu:CeO2) with self-integrated catalytic and luminescence sensing functions was synthesized by a simple and gentle one-pot method to build a dual-readout nanozyme platform for organophosphate compound (OPC) sensing in this work. The catalytic degradation of the model substrate of OPC, p-nitrophenyl phosphate (p-NPP), by as-prepared Eu:CeO2 can be completed in 2 min with little influence of temperature and pH values, highlighting the advantages of Eu:CeO2 as an artificial enzyme for dephosphorylation. Most importantly, the characteristic red emission of Eu3+ (592 nm) from Eu:CeO2 can be quenched by p-NPP, accompanied by a color change from colorless to yellow. Based on this, linear ranges of 4-50 µM with a detection limit of 3.3 µM and 1-20 µM with a detection limit of 0.6 µM for p-NPP were obtained by colorimetric and fluorescence methods, respectively. Furthermore, the fluorescence strategy was effectively applied to the determination of ethyl para-nitrophenyl (EPN), one of the most commonly used pesticides, with a detection limit of 5.86 µM. The proposed strategy was also successfully applied to the assay of p-NPP and EPN in real water samples, showing great application prospects in detecting OPC in the environment.


Subject(s)
Cerium , Phosphoric Monoester Hydrolases , Colorimetry , Organophosphates
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119599, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33662697

ABSTRACT

In this work, a silicon nanoparticles (Si NPs)-based ratiometric fluorescence sensing platform was conveniently fabricated by simply mixing fluorescent Si NPs as co-ligands and reference signal with lanthanide metal ion Eu3+ as response signal. The introduction of ciprofloxacin (CIP) remarkably turned on the characteristic fluorescence of Eu3+ at 590 nm and 619 nm through the "antenna effect". At the same time, the blue emission of Si NPs at 445 nm kept comparatively stable. A good linear relationship between the ratio fluorescence intensity and CIP concentration in the range of 0.211-132.4 µM with a limit of detection (LOD) of 89 nM was obtained. In the presence of Cu2+, the fluorescence emission of Eu3+ was sharply turned off because of the stronger coordination ability of Cu2+ with CIP, which guaranteed the sequential detection of Cu2+. Meanwhile, the distinct fluorescent color change from bright blue to red, then back to blue, enabled naked-eye visual detection of CIP and Cu2+ in the solution phase and on paper-based test strip, and was successfully applied to determine the levels of CIP in complicated food samples with high sensitivity.


Subject(s)
Ciprofloxacin , Nanoparticles , Fluorescence , Fluorescent Dyes , Silicon , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL