Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 627(8005): 783-788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538937

ABSTRACT

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

2.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38728226

ABSTRACT

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Subject(s)
Escherichia coli , Escherichia coli/physiology , Models, Biological , Biodiversity , Ecosystem
4.
Nano Lett ; 24(30): 9360-9367, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012487

ABSTRACT

The application of scattered light via an antenna-reactor configuration is promising for converting thermocatalysts into photocatalysts. However, the efficiency of dielectric antennas in photon-to-chemical conversion remains suboptimal. Herein, we present an effective approach to promote light utilization efficiency by designing dielectric antenna-hybrid bilayered reactors. Experimental studies and finite-difference time-domain simulations demonstrate that the engineered SiO2-carbon/metal dielectric antenna-hybrid bilayered reactors exhibit a synergy of absorption superposition and electric field confinement between carbon and metals, leading to the improved absorption of scattered light, upgraded charge carriers density, and ultimately promoted photoactivity in hydrogenating chlorobenzene with an average benzene formation rate of 18 258 µmol g-1 h-1, outperforming the reported results. Notably, the carbon interlayer proves to be more effective than the commonly explored dielectric TiO2 interlayer in boosting the benzene formation rate by over 3 times. This research paves the way for promoting near-field scattered photon-to-chemical conversion through a dielectric antenna-hybrid reactor configuration.

5.
Biochem Biophys Res Commun ; 733: 150716, 2024 11 12.
Article in English | MEDLINE | ID: mdl-39321486

ABSTRACT

BACKGROUND: Ischemia-induced cellular damage and stress responses significantly impact cellular viability and function. Icariin (ICA), known for its protective effects, has been studied to understand its role in mitigating oxygen-glucose deprivation/reperfusion (OGD/R)-induced endoplasmic reticulum (ER) stress and ferroptosis in H9C2 cardiomyoblast cells. METHODS: We employed an in vitro OGD/R model using H9C2 cells. ICA's effects were analyzed across multiple concentrations. Key indicators of ER stress, autophagy, and ferroptosis-including markers like Bip, PERK, IRE1, ATF6, P62, FTH1, LC3II/LC3I, and NCOA4-were assessed using Western blotting, electron microscopy, and biochemical assays. Additionally, the role of the IRE1/JNK pathway in mitochondrial dynamics and its influence on mitochondrial dynamics protein was explored through specific inhibition and activation experiments. RESULTS: ICA significantly reduced the activation of UPR pathways, decreased autophagic vacuole formation, and maintained cell viability in response to OGD/R and Erastin-induced ferroptosis. These protective effects were associated with modulated autophagic processes, reduced lipid peroxidation, and decreased ferrous ion accumulation. Inhibition of the IRE1/JNK pathway and subsequent Drp1 activity demonstrated reduced mitochondrial recruitment and mitophagy, correlating with decreased ferroptosis markers and improved cell survival. CONCLUSION: Our findings highlight ICA's potential in modulating IRE1/JNK pathway, autophagy, providing a therapeutic avenue for mitigating ferroptosis in myocardial ischemia-reperfusion injury (MIRI).


Subject(s)
Endoplasmic Reticulum Stress , Ferroptosis , Flavonoids , Myocardial Reperfusion Injury , Protein Serine-Threonine Kinases , Ferroptosis/drug effects , Flavonoids/pharmacology , Animals , Rats , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Endoplasmic Reticulum Stress/drug effects , Cell Line , Autophagy/drug effects , Endoribonucleases/metabolism , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , Glucose/metabolism , Glucose/deficiency , Multienzyme Complexes
6.
Small ; 20(39): e2304530, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38415903

ABSTRACT

Elevating the working temperature delivers a simple and universal approach to enhance the energy storage performances of supercapacitors owing to the fundamental improvements in ion transportation kinetics. Among all heating methods, introducing green and sustainable photothermal heating on supercapacitors (SCs) is highly desired yet remains an open challenge, especially for developing an efficient and universal photothermal heating strategy that can be generally applied to arbitrary SC devices. Flash-enabled graphene (FG) absorbers are produced through a simple and facile flash reduction process, which can be coated on the surface of any SC devices to lift their working temperature via a photothermal effect, thus, improving their overall performance, including both power and energy densities. With the systematic temperature-dependent investigation and the in-depth numerical simulation of SC performances, an evident enhancement in capacitance up to 65% can be achieved in photothermally enhanced SC coin cell devices with FG photo-absorbers. This simple, practical, and universal enhancement strategy provides a novel insight into boosting SC performances without bringing complexity in electrode fabrication/optimization. Also, it sheds light on the highly efficient utilization of green and renewable photothermal energies for broad application scenarios, especially for energy storage devices.

7.
Small ; : e2405592, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155416

ABSTRACT

Aqueous ammonium ion batteries (AAIBs) have garnered significant attention due to their unique energy storage mechanism. However, their progress is hindered by the relatively low capacities of NH4 + host materials. Herein, the study proposes an electrodeposited tungsten oxide@polyaniline (WOx@PANI) composite electrode as a NH4 + host, which achieves an ultrahigh capacity of 280.3 mAh g-1 at 1 A g-1, surpassing the vast majority of previously reported NH4 + host materials. The synergistic interaction of coordination chemistry and hydrogen bond chemistry between the WOx and PANI enhances the charge storage capacity. Experimental results indicate that the strong interfacial coordination bonding (N: →W6+) effectively modulates the chemical environment of W atoms, enhances the protonation level of PANI, and thus consequently the conductivity and stability of the composites. Spectroscopy analysis further reveals a unique NH4 +/H+ co-insertion mechanism, in which the interfacial hydrogen bond network (N-H···O) accelerates proton involvement in the energy storage process and activates the Grotthuss hopping conduction of H+ between the hydrated tungsten oxide layers. This work opens a new avenue to achieving high-capacity NH4 + storage through interfacial chemistry interactions, overcoming the capacity limitations of NH4 + host materials for aqueous energy storage.

8.
Small ; 20(6): e2306275, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775936

ABSTRACT

Vanadium trioxide (V6 O13 ) cathode has recently aroused intensive interest for aqueous zinc-ion batteries (AZIBs) due to their structural and electrochemical diversities. However, it undergoes sluggish reaction kinetics and significant capacity decay during prolonged cycling. Herein, an oxygen-vacancy-reinforced heterojunction in V6 O13- x /reduced graphene oxide (rGO) cathode is designed through electrostatic assembly and annealing strategy. The abundant oxygen vacancies existing in V6 O13- x weaken the electrostatic attraction with the inserted Zn2+ ; the external electric field constructed by the heterointerfaces between V6 O13- x and rGO provides additional built-in driving force for Zn2+ migration; the oxygen-vacancy-enriched V6 O13- x highly dispersed on rGO fabricates the interconnected conductive network, which achieves rapid Zn2+ migration from heterointerfaces to lattice. Consequently, the obtained 2D heterostructure exhibits a remarkable capacity of 424.5 mAh g-1 at 0.1 A g-1 , and a stable capacity retention (96% after 5800 cycles) at the fast discharge rate of 10 A g-1 . Besides, a flexible pouch-type AZIB with real-life practicability is fabricated, which can successfully power commercial products, and maintain stable zinc-ion storage performances even under bending, heavy strikes, and pressure condition. A series of quantitative investigation of pouch batteries demonstrates the possibility of pushing pouch-type AZIBs to realistic energy storage market.

9.
Small ; 20(4): e2306396, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712176

ABSTRACT

Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.

10.
Small ; 20(36): e2401849, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38682728

ABSTRACT

Manganese dioxide (MnO2) materials have recently garnered attention as prospective high-capacity cathodes, owing to their theoretical two-electron redox reaction in charge storage processes. However, their practical application in aqueous energy storage systems faces a formidable challenge: the disproportionation of Mn3+ ions, leading to a significant reduction in their capacity. To address this limitation, the study presents a novel graphitic carbon interlayer-engineered manganese oxide (CI-MnOx) characterized by an open structure and abundant defects. This innovative material serves several essential functions for efficient aqueous energy storage. First, a graphitic carbon layer coats the MnOx molecular interlayer, effectively inhibiting Mn3+ disproportionation and substantially enhancing electrode conductivity. Second, the phase variation within MnOx generates numerous crystal defects, vacancies, and active sites, optimizing electron-transfer capability. Third, the flexible carbon layer acts as a buffer, mitigating the volume expansion of MnOx during extended cycling. The synergistic effects of these features result in the CI-MnOx exhibiting an impressive high capacity of 272 mAh g-1 (1224 F g-1) at 0.25 A g-1. Notably, the CI-MnOx demonstrates zero capacity loss after 90 000 cycles (≈3011 h), an uncommon longevity for manganese oxide materials. Spectral characterizations reveal reversible cation intercalation and conversion reactions with multielectron transfer in a LiCl electrolyte.

11.
Curr Atheroscler Rep ; 26(8): 383-394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878139

ABSTRACT

PURPOSE OF REVIEW: The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS: Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.


Subject(s)
Atherosclerosis , Inflammation , Lipoprotein(a) , Humans , Lipoprotein(a)/metabolism , Lipoprotein(a)/blood , Atherosclerosis/metabolism , Atherosclerosis/immunology , Inflammation/metabolism , Animals , Risk Factors
12.
PLoS Comput Biol ; 19(12): e1010868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039342

ABSTRACT

Competition is ubiquitous in microbial communities, shaping both their spatial and temporal structure and composition. Classical minimal models of competition, such as the Moran model, have been employed in ecology and evolutionary biology to understand the role of fixation and invasion in the maintenance of population diversity. Informed by recent experimental studies of cellular competition in confined spaces, we extend the Moran model to incorporate mechanical interactions between cells that divide within the limited space of a one-dimensional open microchannel. The model characterizes the skewed collective growth of the cells dividing within the channel, causing cells to be expelled at the channel ends. The results of this spatial exclusion model differ significantly from those of its classical well-mixed counterpart. The mean time to fixation of a species is greatly accelerated, scaling logarithmically, rather than algebraically, with the system size, and fixation/extinction probability sharply depends on the species' initial fractional abundance. By contrast, successful takeovers by invasive species, whether through mutation or immigration, are substantially less likely than in the Moran model. We also find that the spatial exclusion tends to attenuate the effects of fitness differences on the fixation times and probabilities. We find that these effects arise from the combination of the quasi-neutral "tug-of-war" diffusion dynamics of the inter-species boundary around an unstable equipoise point and the quasi-deterministic avalanche dynamics away from the fixed point. These results, which can be tested in microfluidic monolayer devices, have implications for the maintenance of species diversity in dense bacterial and cellular ecosystems where spatial exclusion is central to the competition, such as in organized biofilms or intestinal crypts.


Subject(s)
Ecosystem , Microbiota , Population Dynamics , Biological Evolution , Introduced Species , Models, Biological
13.
Chem Rev ; 122(19): 15204-15355, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35749269

ABSTRACT

The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.


Subject(s)
Optics and Photonics , Humans
14.
Environ Sci Technol ; 58(11): 4844-4851, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38385614

ABSTRACT

This perspective presents the latest advancements in selective polymerization pathways in advanced oxidation processes (AOPs) for removal of featured organic pollutants in wastewater. In radical-based homogeneous reactions, SO4• --based systems exhibit superior oxidative activity toward aromatics with electron-donating substituents via single electron transfer and radical adduct formation (RAF). The produced organic radical cations subsequently undergo coupling and polymerization reactions to produce polymers. For •OH-based oxidation, metal ions facilitate the production of monomer radicals via RAF. Additionally, heterogeneous catalysts can mediate both coupling and polymerization reactions via persulfate activation without generating inorganic radicals. Metal-based catalysts will mediate a direct oxidation pathway toward polymerization. In contrast, carbon-based catalysts will induce coupling reactions to produce low-molecular-weight oligomers (≤4 units) via an electron transfer process. In comparison to mineralization, polymerization pathways remarkably reduce peroxide usage, quickly separate pollutants from the aqueous phase, and generate polymeric byproducts. Thus, AOP-driven polymerization systems hold significant promise in reducing carbon emission and realizing carbon recycling in water treatment processes.


Subject(s)
Water Pollutants, Chemical , Oxidation-Reduction , Carbon , Wastewater , Metals , Polymers
15.
Environ Sci Technol ; 58(42): 19080-19089, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39276341

ABSTRACT

Organic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system. The established quantitative structure-activity relationship revealed a volcano-type dependence of the degradation rates on the Hammett constants of pollutants. Leveraging substantial analytical techniques and modeling analysis, we concluded that the electron-rich phenolics would inhibit the generation of both primary (Mn(III)NTA) and secondary (Mn(V)NTA) high-valent manganese species through complexation and competition effects. Specifically, the electron-rich phenolics would form a hydrogen bond with Mn(II)/NTA/PMS through outer-sphere interactions, thereby reducing the electrophilic reactivity of PMS to accept the electron transfer from Mn(II)NTA, and slowing down the generation of reactive Mn(III)NTA. Furthermore, the generated Mn(III)NTA is more inclined to react with electron-rich phenolics than PMS due to their higher reaction rate constants (8314 ± 440, 6372 ± 146, and 6919 ± 31 M-1 s-1 for 4-methoxyphenol, acetaminophen, and 4-presol, respectively, as compared with 671 M-1 s-1 for PMS). Consequently, the two-stage inhibition impeded the generation of Mn(V)NTA. In contrast, the complexation and competition effects are insignificant for electron-deficient phenolics, leading to declined reaction rates when the Hammett constants of pollutants increase. For practical applications, such complexation and competition effects would cause the degradation of electron-rich phenolics to be more susceptible to water matrixes, whereas the degradation of electron-deficient phenolics remains largely unaffected. Overall, this study elucidated the intricate interaction mechanisms between contaminants and reactive metal species at both the electronic and kinetic levels, further illuminating their implications for practical treatment.


Subject(s)
Manganese , Nitrilotriacetic Acid , Phenols , Manganese/chemistry , Phenols/chemistry , Nitrilotriacetic Acid/chemistry , Oxidation-Reduction , Reactive Oxygen Species , Peroxides
16.
Surg Endosc ; 38(4): 1867-1876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307959

ABSTRACT

BACKGROUND: The KangDuo surgical robot (KD-SR-01) was recently developed in China. This study aims to evaluate the short-term outcomes of KD-SR-01 for colorectal cancer surgery. METHODS: This is a multicentre randomised controlled noninferiority trial conducted in three centers in China. Enrolled patients were randomly assigned at a 1:1 ratio to receive surgery using the KD-SR-01 system (KD group) or the da Vinci Xi (DV) robotic system (DV group). The primary endpoint was the success rate of operation. The second endpoints were surgical outcomes, pathological outcomes, and postoperative outcomes. RESULTS: Between July 2022 and May 2023. A total of 100 patients were included in the trial and randomly assigned to the KD group (50 patients) and the DV group (50 patients). All cases were completed successfully without conversion to laparoscopic surgery. The time to flatus and the incidence of postoperative complications of Clavien-Dindo grade II or higher grade were comparable between the two groups. Surgeons reported a high level of comfort with the KD-SR-01 system. In the subgroup analysis of different operative procedures, there were no significant differences in docking time, console time, blood loss, and the length of the incision for extraction between the two groups. There were no differences in pathological outcomes including maximum tumor diameter, circumferential resection margin, distal resection margin, and number of harvested lymph nodes. CONCLUSIONS: The KD-SR-01 system was a viable option for colorectal cancer robotic surgery, with acceptable short-term outcomes comparable to the da Vinci Xi robotic system.


Subject(s)
Colorectal Neoplasms , Digestive System Surgical Procedures , Laparoscopy , Robotic Surgical Procedures , Robotics , Humans , Robotic Surgical Procedures/methods , Margins of Excision , Laparoscopy/methods , Colorectal Neoplasms/surgery , Treatment Outcome , Retrospective Studies
17.
BMC Surg ; 24(1): 21, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218808

ABSTRACT

BACKGROUND: Acute mesenteric ischemia is a rare but lethal disease. Acute occlusive mesenteric ischemia consists of mesenteric artery embolism, mesenteric artery thrombosis, and mesenteric vein thrombosis. This study aimed to investigate the factors that may affect the outcome of acute occlusive mesenteric ischemia. METHODS: Data from acute occlusive mesenteric ischemia patients admitted between May 2016 and May 2022 were reviewed retrospectively. Patients were divided into 2 groups according to whether complications(Clavien‒Dindo ≥ 2) occurred within 6 months of the first admission. Demographics, symptoms, signs, laboratory results, computed tomography angiography features, management and outcomes were analyzed. RESULTS: 59 patients were enrolled in this study. Complications(Clavien‒Dindo ≥ 2) occurred within 6 months of the first admission in 17 patients. Transmural intestinal necrosis, peritonitis, white blood cell count, percentage of neutrophils, percentage of lymphocytes, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, creatine kinase isoenzyme, cardiac troponin I, laparoscopic exploration rate, open embolectomy rate, enterostomy rate, length of necrotic small bowel, length of healthy small bowel, surgical time and intraoperative blood loss differed significantly between groups. Creatine kinase isoenzyme (OR = 1.415, 95% CI: 1.060-1.888) and surgical time (OR = 1.014, 95% CI: 1.001-1.026) were independent risk factors associated with complications(Clavien‒Dindo ≥ 2). CONCLUSIONS: Our analysis suggests that acute occlusive mesenteric ischemia patients with a creatine kinase isoenzyme level greater than 2.22 ng/mL or a surgical time longer than 156 min are more likely to experience complications'(Clavien‒Dindo ≥ 2) occurrence within 6 months of the first admission.


Subject(s)
Mesenteric Ischemia , Mesenteric Vascular Occlusion , Thrombosis , Humans , Mesenteric Ischemia/etiology , Mesenteric Ischemia/surgery , Retrospective Studies , Isoenzymes , Acute Disease , Ischemia/etiology , Creatine Kinase , Mesenteric Vascular Occlusion/complications , Mesenteric Vascular Occlusion/diagnosis , Mesenteric Vascular Occlusion/surgery
18.
Nano Lett ; 23(24): 11485-11492, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38063397

ABSTRACT

The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce the power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase transition in chromium (Cr) is proven to be an effective mechanism for creating an additional part of the SHE, named the fluctuation spin Hall effect. The SHA is significantly enhanced when the temperature approaches the Néel temperature (TN) of Cr and has a peak value of -0.36 near TN. This value is higher than the room-temperature value by 153% and leads to a low normalized power consumption among known spin-orbit torque materials. This study demonstrates the critical spin fluctuation as a prospective way to increase the SHA and enriches the AFM material candidates for spin-orbitronic devices.

19.
Angew Chem Int Ed Engl ; 63(46): e202413354, 2024 Nov 11.
Article in English | MEDLINE | ID: mdl-39157909

ABSTRACT

Aqueous ammonium ion batteries (AIBs) pose the advantages of high safety, low cost, and high efficiency, capturing substantial research interest. The intrinsic chemical properties of NH4 + promote the formation of hydrogen bonds with other constituents in AIBs, critically influencing the processes of NH4 + transfer, storage, and diffusion. This review delves into the pivotal role of hydrogen bonding chemistry in AIBs. Firstly, the principles of hydrogen bond are elucidated as the dominant chemical interaction governing NH4 + dynamics in AIBs. Subsequently, a detailed analysis is conducted on the impacts of hydrogen bonds in both electrolytes and electrode materials. Furthermore, the practical applications of hydrogen bonding chemistry within the context of AIBs are assessed. Finally, strategic insights and future research directions are proposed to harness hydrogen bonding effects for optimizing AIB performance. This review aims to define the mechanisms and impacts of hydrogen bonds in AIBs, providing robust strategies to enhance electrochemical performance, deepen the understanding of energy storage mechanisms, and guide the future advancement of AIBs technology.

20.
Angew Chem Int Ed Engl ; 63(44): e202411543, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39115459

ABSTRACT

Dual-atom catalysts (DACs) are promising for applications in electrochemical CO2 reduction due to the enhanced flexibility of the catalytic sites and the synergistic effect between dual atoms. However, precisely controlling the atomic distance and identifying the dual-atom configuration of DACs to optimize the catalytic performance remains a challenge. Here, the Ni and Fe atomic pairs were constructed on nitrogen-doped carbon support in three different configurations: NiFe-isolate, NiFe-N bridge, and NiFe-bonding. It was found that the NiFe-N bridge catalyst with NiN4 and FeN4 sharing two N atoms exhibited superior CO2 reduction activity and promising stability when compared to the NiFe-isolate and NiFe-bonding catalysts. A series of characterizations and density functional theory calculations suggested that the N-bridged NiFe sites with an appropriate distance between Ni and Fe atoms can exert a more pronounced synergy. It not only regulated the suitable adsorption strength for the *COOH intermediate but also promoted the desorption of *CO, thus accelerating the CO2 electroreduction to CO. This work provides an important implication for the enhancement of catalysis by the tailoring of the coordination structure of DACs, with the identification of distance effect between neighboring dual atoms.

SELECTION OF CITATIONS
SEARCH DETAIL