Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38676206

ABSTRACT

Autocollimators are widely used optical axis-measuring tools, but their measurement errors increase significantly when measuring under non-leveled conditions and they have a limited measurement range due to the limitations of the measurement principle. To realize axis measurement under non-leveled conditions, this paper proposes an autocollimator axis measurement method based on the strapdown inertial navigation system (SINS). First, the measurement model of the system was established. This model applies the SINS to measure the change in attitude of the autocollimator. The autocollimator was then applied to measure the angular relationship between the measured axis and its own axis, based on which the angular relationship of the axis was measured via computation through signal processing and data fusion in a multi-sensor system. After analyzing the measurement errors of the system model, the Monte Carlo method was applied to carry out a simulation analysis. This showed that the majority of the measurement errors were within ±0.002° and the overall measurement accuracy was within ±0.006°. Tests using equipment with the same parameters as those used in the simulation analysis showed that the majority of the measurement errors were within ±0.004° and the overall error was within ±0.006°, which is consistent with the simulation results. This analysis proves that this method solves the problem of the autocollimator being unable to measure the axis under non-leveled conditions and meets the needs of axis measurement with the application of autocollimators under a moving base.

2.
Opt Express ; 31(25): 41740-41755, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087565

ABSTRACT

In this study, a collaborative compensation method for low-dimensional attitude maneuvering and time delay integration charge-coupled device (TDICCD) line-frequency matching is proposed. The method is combined with the validation and analysis of the coordinate system transformation model to address the mismatch between the TDI charge transfer speed and the speed of the target. This mismatch is caused by the inconsistency between the rotational scanning direction of the double-sided mirror used for dynamic vertical orbit scanning imaging in low Earth-orbit satellites and the direction of the satellite along its orbit. The image motion per unit exposure time is decreased from 0.619µm to 0.023µm compared with the uncompensated maneuver mode, and the image quality is noticeably higher.

3.
Cancer Cell Int ; 21(1): 149, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663509

ABSTRACT

BACKGROUND: To explore the mechanism of LINC00470 in serum exosomes from glioma patients regulating the autophagy and proliferation of glioma cells. METHODS: Exosomes were extracted from glioma patients (GBM-exo). Expression of LINC00470 in exosomes was analyzed with the clinicopathological characteristics of glioma patients. Glioma mouse model was established. The effects of LINC00470, miR-580-3p and WEE1 on cell autophagy and proliferation, as well as the activation of PI3K/AKT/mTOR pathway were measured. Dual luciferase reporter assay and RNA immunoprecipitation (RIP) were conducted to validate the binding of LINC00470 and miR-580-3p and of miR-580-3p and WEE1. RESULTS: LINC00470 overexpressed in GBM-exo and associated with disease severity and postoperative survival time of glioma patients. GBM-exo deteriorated tumor progression in nude mice. Cells incubated with GBM-exo or transfected with pcDNA3.1-LINC00470/miR-580-3p inhibitor/pcDNA3.1-WEE1 had less autophagosome, downregulated LC3-II/LC3-I and Beclin1 expression levels and increased expression of p62 as well as strengthened proliferation ability. The PI3K/AKT/mTOR pathway was activated. LINC00470 competitively bound to miR-580-3p with WEE1. CONCLUSION: LINC00470 in GBM-exo can bind to miR-580-3p in glioma cells to regulate WEE1 expression and activate the PI3K/AKT/mTOR pathway, thereby inhibiting autophagy and enhancing the proliferation of glioma cells.

4.
Mol Neurobiol ; 61(10): 7319-7334, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38381297

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.


Subject(s)
Membrane Proteins , Mitophagy , Neurons , Rats, Sprague-Dawley , Reperfusion Injury , Transcription Factor AP-2 , Animals , Mitophagy/physiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Male , Neurons/metabolism , Neurons/pathology , Membrane Proteins/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Rats , Apoptosis , Mitochondrial Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotection , Cell Survival , Cells, Cultured , Adenosine/analogs & derivatives
5.
Adv Sci (Weinh) ; 11(24): e2309750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564772

ABSTRACT

The pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal-support interaction for OER and HER. Notably, the Ir@SrIrO3-175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm-2 for OER and 28 mV at 10 mA cm-2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3-175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.

6.
Adv Mater ; 36(27): e2405052, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38652767

ABSTRACT

Protonic ceramic fuel cells (PCFCs) hold potential for sustainable energy conversion, yet their widespread application is hindered by the sluggish kinetics and inferior stability of cathode materials. Here, a facile and efficient reverse atom capture technique is developed to manipulate the surface chemistry of PrBa0.5Sr0.5Co1.5Fe0.5O5+ δ (PBSCF) cathode for PCFCs. This method successfully captures segregated Ba and Sr cations on the PBSCF surface using W species, creating a (Ba/Sr)(Co/Fe/W)O3- δ (BSCFW)@PBSCF heterostructure. Benefiting from enhanced kinetics of proton-involved oxygen reduction reaction and strengthened chemical stability, the single cell using the optimized 2W-PBSCF cathode demonstrates an exceptional peak power density of 1.32 W cm-2 at 650 °C and maintains durable performance for 240 h. Theoretical calculations unveil that the BSCFW perovskite delivers lower oxygen vacancy formation energy, hydration energy, and proton transfer energy compared to the PBSCF perovskite. This protocol offers new insights into advanced atom capture techniques for sustainable energy infrastructures.

7.
CNS Neurosci Ther ; 29(8): 2292-2307, 2023 08.
Article in English | MEDLINE | ID: mdl-36987665

ABSTRACT

OBJECTIVE: Temozolomide is extensively applied in chemotherapy for glioblastoma with unclear exact action mechanisms. This article seeks to address the potential molecular mechanisms in temozolomide therapy for glioblastoma involving LINC00470. METHODS: Bioinformatics analysis was conducted to predict the potential mechanism of LINC00470 in glioblastoma, which was validated by dual-luciferase reporter, RIP, ChIP, and RNA pull-down assays. LINC00470 expression and the predicted downstream transcription factor early growth response 2 (EGR2) were detected in the collected brain tissues from glioblastoma patients. Following temozolomide treatment and/or gain- and loss-of-function approaches in glioblastoma cells, cell viability, invasion, migration, cycle distribution, angiogenesis, autophagy, and apoptosis were measured. In addition, the expression of mesenchymal surface marker proteins was assessed by western blot. Tumor xenograft in nude mice was conducted for in vivo validation. RESULTS: Mechanistic analysis and bioinformatics analysis revealed that LINC00470 transcriptionally activated SRY-related high-mobility-group box 4 (SOX4) through the transcription factor EGR2. LINC00470 and EGR2 were highly expressed in brain tissues of glioblastoma patients. LINC00470 and EGR2 mRNA expression gradually decreased with increasing concentrations of temozolomide in glioblastoma cells, and SOX4 expression was reduced in cells by temozolomide and LINC00470 knockdown. Temozolomide treatment induced cell cycle arrest, diminished cell viability, migration, invasion, and angiogenesis, and increased apoptosis and autophagy in glioblastoma, which was counteracted by overexpressing LINC00470 or SOX4 but was further promoted by LINC00470 knockdown. Temozolomide restrained glioblastoma growth and angiogenesis in vivo, while LINC00470 or SOX4 overexpression nullified but LINC00470 knockdown further facilitated these trends. CONCLUSION: Conclusively, temozolomide repressed glioblastoma progression by repressing the LINC00470/EGR2/SOX4 axis.


Subject(s)
Early Growth Response Protein 2 , Glioblastoma , RNA, Long Noncoding , SOXC Transcription Factors , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Mice, Nude , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Temozolomide/pharmacology , Transcription Factors/genetics , RNA, Long Noncoding/genetics
8.
Int J Mol Med ; 50(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-35762310

ABSTRACT

The present study aimed to investigate the effects of long non­coding (lncRNA) dihydrofolate reductase­like 1 (DHFRL1­4) on cerebral ischemia/reperfusion (I/R)­induced injury. For this purpose, mice injected with lentivirus with small interfering RNA targeting DHFRL1­4 or negative control siRNA were used to construct models of cerebral I/R injury. Following the establishment of the model, the infarct size, neurological deficit score, apoptosis and the expression levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), Wnt family member 3a (Wnt3a), glycogen synthase kinase­3ß (GSK­3ß) and phosphorylated GSK­3ß were assessed. The expression of DHFRL1­4 was significantly upregulated in the I/R model. In the control and sham groups, the boundaries between the cortex and gray matter were clear, and no edema or necrosis were observed. The nerve cells were arranged orderly and evenly, and the cell membranes were intact with visible nucleus and nucleolus. In the model group however, the nerve fibers were slightly necrotic and swollen, and the number of nerve cells was reduced. In the mice injected with si­DHFRL1­4 lentivirus, the brain tissues exhibited less liquefaction and degeneration, as well as less edema. Compared with the control and sham groups, the model group had a significantly larger infarct area, a higher apoptotic rate, higher bFGF, VEGF, Wnt3a and GSK­3ß expression levels and a greater neurological deficit score. However, the mice injected with si­DHFRL1­4 lentivirus exhibited a significantly reduced infarct area, a lower apoptotic rate, lower Wnt3a and GSK­3ß expression levels, a lower neurological deficit score, and significantly upregulated bFGF and VEGF levels.


Subject(s)
Brain Ischemia , Neovascularization, Physiologic , RNA, Long Noncoding , Reperfusion Injury , Animals , Apoptosis/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Infarction , Mice , Neovascularization, Physiologic/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/pharmacology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
Transl Oncol ; 15(1): 101282, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34800915

ABSTRACT

OBJECTIVE: Glioblastoma (GBM) is the most frequent brain malignancy with high incidence, and long noncoding RNAs (lncRNAs) exerts functions in GBM. In this research, we focused on the capabilities of lncRNA RBPMS-AS1 in radiosensitivity of GBM. METHODS: RBPMS-AS1 and CAMTA1 expression levels were determined in GBM tissues and cells. StarBase v3.0 database was searched for predicting miRNAs that simultaneously bound to RBPMS-AS1 and CAMTA1. pcDNA3.1-RBPMS-AS1, pcDNA3.1-CAMTA1, miR-301a-3p mimic, or pcDNA3.1-RBPMS-AS1/pcDNA3.1-CAMTA1 and miR-301a-3p mimic were transfected into GBM cells to test radiosensitivity, cell proliferation and apoptosis. The interactions of miR-301a-3p with RBPMS-AS1 and CAMTA1, as well as CAMTA1 and NRGN, were confirmed. In vivo imaging technology was utilized to detect tumor growth in orthotopic xenograft tumors, and Ki67 expression was tested in intracranial tumors. RESULTS: RBPMS-AS1 and CAMTA1 levels were reduced in GBM tissues and cells. miR-301a-3p had a binding site with both RBPMS-AS1 and CAMTA1 and it was the most significantly-upregulated one. Upregulation of RBPMS-AS1 or CAMTA1 enhanced the radiosensitivity and cell apoptosis while suppressing proliferation of GBM cells. Conversely, miR-301a-3p overexpression diminished the radiosensitivity and cell apoptosis while inducing proliferation of GBM cells. Overexpression of RBPMS-AS1 or CAMTA1 reversed the effects of overexpressed miR-301a-3p in GBM cells. Mechanistically, RBPMS-AS1 enhanced CAMTA1 expression in GBM cells through sponging miR-301a-3p, and CAMTA1 promoted NRGN expression. In animal experiments, overexpressed RBPMS-AS1 inhibited tumor growth and the positive expression of Ki67 both before and after radiation therapy. CONCLUSION: RBPMS-AS1 promotes NRGN transcription through the miR-301a-3p/CAMTA1 axis and enhances the radiosensitivity of GBM.

10.
ACS Appl Mater Interfaces ; 14(10): 12450-12460, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35235287

ABSTRACT

Organic solar cells (OSCs) based on an inverted architecture generally have better stability compared to those based on a standard architecture. However, the photoactive area of the inverted solar cells increases under ultraviolet (UV) or solar illuminatiom because of the too-high conductivity of the UV-illuminated zinc oxide (ZnO) interlayer. This limits the potential of the inverted solar cells for industrial applications. Herein, lithium-doped ZnO (Li-ZnO) films are employed as the cathode interlayer to construct inverted OSCs. The incorporation of Li ions is found to reduce the lateral conductivity of the UV-treated ZnO films because of the presence of Li ions, preventing the high-quality-growth of ZnO nanocrystals. This addresses the problem of having too-high conductivity in the UV-treated ZnO layer, causing the increased photoactive area of inverted solar cells. The overall performance of the solar cell is shown to be higher after the incorporation of Li ions in the ZnO layer, mainly due to the increased fill factor (FF), originating from the reduced trap-assisted recombination losses. Finally, the inverted solar cells based on the Li-ZnO interlayer are demonstrated to have a much better long-term stability, as compared to those based on ZnO. This allows the ZnO-based interlayers to be used for the mass production of organic solar cell modules.

11.
Cell Death Dis ; 12(8): 746, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321465

ABSTRACT

MicroRNA (miR)-361-5p has been studied to suppress gliomas development. Based on that, an insight into the regulatory mechanism of miR-361-5p in gliomas was supplemented from ubiquitin protein ligase E3 component N-recognin 5 (UBR5)-mediated ubiquitination of ataxia-telangiectasia mutated interactor (ATMIN). miR-361-5p, ATMIN, and UBR5 levels were clinically analyzed in gliomas tissues, which were further validated in gliomas cell lines. Loss/gain-of-function method was applied to determine the roles of miR-361-5p and UBR5 in gliomas, as to cell viability, migration, invasion, colony formation ability, and apoptosis in vitro and tumorigenesis in vivo. The relationship between miR-361-5p and UBR5 was verified and the interaction between UBR5 and ATMIN was explored. It was detected that reduced miR-361-5p and ATMIN and enhanced UBR5 levels showed in gliomas. Elevating miR-361-5p was repressive in gliomas progression. UBR5 was directly targeted by miR-361-5p. UBR5 can ubiquitinate ATMIN. miR-361-5p suppressed gliomas by regulating UBR5-mediated ubiquitination of ATMIN. Downregulating UBR5 impeded gliomas tumor growth in vivo. Upregulating miR-361-5p targets UBR5 to promote ATMIN protein expression, thus to recline the malignant phenotype of gliomas cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Animals , Base Sequence , Brain/metabolism , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Glioma/pathology , Humans , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice, Nude , MicroRNAs/genetics , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Up-Regulation/genetics , Young Adult
12.
J Drug Target ; 29(7): 761-770, 2021 08.
Article in English | MEDLINE | ID: mdl-33480300

ABSTRACT

OBJECTIVE: Histone deacetylases (HDACs) have been revealed to be involved in cerebrovascular diseases, while the role of HDAC9 in intracranial aneurysm (IA) remains seldom studied. We aim to explore the role of the HDAC9/microRNA-92a (miR-92a)/Bcl-2-like protein 11 (BCL2L11) axis in IA progression. METHODS: Expression of HDAC9, miR-92a and BCL2L11 in IA tissues was assessed. IA rat models were established by ligation of left renal artery and common carotid artery, and the rats were respectively injected with relative plasmid vectors and/or oligonucleotides. The blood pressure was measured to estimate the IA degree, and the pathological changes were observed. The expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor (VEGF) was detected, and the levels of inflammatory factors were evaluated. Expression of apoptosis-related proteins, HDAC9, miR-92a and BCL2L11 was assessed. RESULTS: HDAC9 and BCL2L11 were upregulated while miR-92a was downregulated in IA clinical samples and rat models. HDAC9 inhibition or miR-92a elevation improved pathological changes and repressed apoptosis and expression of MMP-2, MMP-9, VEGF and inflammatory factors in vascular tissues from IA rats. Oppositely, HDAC9 overexpression or miR-92a reduction had contrary effects. miR-92a downregulation reversed the effect of silenced HDAC9 on IA rats. CONCLUSION: HDAC9 inhibition upregulates miR-92a to repress the progression of IA via silencing BCL2L11.


Subject(s)
Bcl-2-Like Protein 11/genetics , Histone Deacetylases/genetics , Intracranial Aneurysm/physiopathology , MicroRNAs/genetics , Repressor Proteins/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis/genetics , Disease Models, Animal , Disease Progression , Down-Regulation , Female , Gene Silencing , Humans , Intracranial Aneurysm/genetics , Male , Middle Aged , Rats , Rats, Sprague-Dawley , Up-Regulation
13.
Front Pharmacol ; 12: 690549, 2021.
Article in English | MEDLINE | ID: mdl-34737695

ABSTRACT

Sepsis-induced acute lung injury (ALI) culminates in multiple organ failure via uncontrolled inflammatory responses and requires effective treatment. Herein, we aimed to investigate the effect of calycosin (CA), a natural isoflavonoid, on sepsis-induced ALI. CA attenuated lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced structural damage and inflammatory cell infiltration in lung tissues by histopathological analysis. CA significantly reduced lung wet/dry ratio, inflammatory cell infiltration in bronchoalveolar lavage fluid, and myeloperoxidase activity. Moreover, CA improved the survival of septic mice. CA also substantially inhibited interleukin (IL)-1ß and IL-18 levels and cleaved caspase 1 expression and activity in lung tissues. Additionally, CA markedly suppressed oxidative stress by increasing levels of superoxide dismutase and glutathione while decreasing malondialdehyde. In vitro assay showed that CA significantly inhibited LPS-induced IL-1ß and IL-18 levels and cleaved caspase 1 expression and activity in BMDMs. Moreover, CA blocked the interaction among NLRP3, ASC, and caspase 1 in LPS-treated cells. CA markedly reduced mitochondrial ROS levels. Significantly, compared with CA treatment, the combination of CA and MitoTEMPO (mitochondria-targeted antioxidant) did not further reduce the IL-1ß and IL-18 levels and cleaved caspase 1 expression and activity and decreased mitochondrial ROS levels. Collectively, the inhibition of mitochondrial ROS-mediated NLRP3 inflammasome activation contributes to the protective effects of CA, which may be considered a potential therapeutic agent for septic ALI.

14.
Neuropsychiatr Dis Treat ; 16: 1229-1238, 2020.
Article in English | MEDLINE | ID: mdl-32494142

ABSTRACT

BACKGROUND/AIMS: Multiple studies have found that microRNAs (miRNAs) are involved in the development of cerebral ischemia. MiR-579-3p can inhibit inflammatory responses and apoptosis, leading to ischemia/reperfusion (I/R) damage. However, the mechanism of how miR-579-3p actions in brain I/R injury remains unclear. This study aimed to investigate the mechanism of the role of miR-579-3p in brain I/R injury. METHODS: A rat model of cerebral ischemia-reperfusion injury was established by suture method. The effects of miR-579-3p on cerebral infarction size, brain water content, and neurological symptoms were evaluated. Flow cytometry was used to detect apoptosis. ELISA was used to detect the level of inflammatory factors. Western blot was used to detect the expression of P65, NCOA1, Bcl-2 and Bax. The relationship between miR-579-3p and NCOA1 was analyzed by bioinformatics analysis and luciferase assay. RESULTS: Overexpression of miR-579-3p reduced infarct volume, brain water content and neurological deficits. Overexpression of miR-579-3p inhibited the expression level of the inflammatory cytokines, such as TNF-α, IL-6, COX-2 and iNOS, and increased the expression level of IL-10. MiR-579-3p overexpression inhibited NF-кB activity by reducing NRIP1. In addition, miR-579-3p could reduce the apoptotic rate of cortical neurons. Overexpression of miR-579-3p inhibited the activity of caspase-3, increased the expression level of anti-apoptotic gene Bcl-2 in neurons, and decreased the expression level of apoptotic gene Bax. CONCLUSION: miR-579-3p can be used to treat brain I/R injury, and its neuroprotective effect may be ascribed to the reduction of inflammation and apoptosis.

15.
Aging (Albany NY) ; 11(9): 2670-2680, 2019 05 05.
Article in English | MEDLINE | ID: mdl-31056533

ABSTRACT

Overexpression of Tafazzin (TAZ), a mitochondrial protein, is often observed in many cancers. However, the association between aberrant expression of TAZ and drug resistance remains unclear. The aim of this study is to explore the role of TAZ in regulating the TRAIL resistance in glioma. We thus established the TRAIL resistance models on glioma by using the U87 and U251 cell lines (U87/R and U251/R). As the results, obvious overexpression of TAZ was observed in U87/R and U251/R cells. However, knockdown of TAZ increased the sensitivity of U87/R and U251/R cells to TRAIL-induced apoptosis. By contrast, expression of miR-125b was downregulated in U87/R and U251/R cells compared to the parental U87 and U251 cells. Furthermore, decrease of miR-125b was responsible for overexpression of TAZ, because the results of dual-luciferase reporter assays verified that TAZ was targeted by miR-125b. We then showed that enforced expression of miR-125b resensitized the U87/R and U251/R cells to TRAIL-dependent damage of mitochondria and activation of caspase-9 and -3. We demonstrated that overexpression of TAZ caused by downregulation of miR-125b promoted resistance of glioma cells to TRAIL. MiR-125b/TAZ axis may represent a potential strategy to reverse the TRAIL in glioma.


Subject(s)
Glioma/metabolism , MicroRNAs/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription Factors/metabolism , Acyltransferases , Animals , Cell Line, Tumor , Cell Survival , Down-Regulation , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , MicroRNAs/genetics , Neoplasms, Experimental , TNF-Related Apoptosis-Inducing Ligand/genetics , Transcription Factors/genetics , Transfection
16.
Adv Mater ; 28(44): 9758-9764, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717010

ABSTRACT

Resistance switching (RS) devices have potential to offer computing and memory function. A new computer unit is built of RS array, where processing and storing of information occur on same devices. Resistance states stored in devices located in arbitrary positions of RS array can be performed various nonvolatile logic operations. Logic functions can be reconfigured by altering trigger signals.

17.
Chem Commun (Camb) ; 47(31): 8943-5, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21709891

ABSTRACT

Novel self-crosslinked alkaline anion exchange membranes with high alkaline stability, excellent dimensional stability and extraordinary methanol resistance were synthesized successfully without using any catalyst or a separate crosslinker.

SELECTION OF CITATIONS
SEARCH DETAIL