Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.061
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(3): 552-561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263463

ABSTRACT

The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.


Subject(s)
Antimanic Agents , Lactic Acid , Lithium Carbonate , Mitochondria , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Lactic Acid/metabolism , Lithium Carbonate/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/metabolism , Antimanic Agents/pharmacology
2.
Nature ; 630(8015): 59-63, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750357

ABSTRACT

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

3.
Proc Natl Acad Sci U S A ; 120(22): e2220148120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216506

ABSTRACT

Exploring the potential lead compounds for Alzheimer's disease (AD) remains one of the challenging tasks. Here, we report that the plant extract conophylline (CNP) impeded amyloidogenesis by preferentially inhibiting BACE1 translation via the 5' untranslated region (5'UTR) and rescued cognitive decline in an animal model of APP/PS1 mice. ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1) was then found to mediate the effect of CNP on BACE1 translation, amyloidogenesis, glial activation, and cognitive function. Through analysis of the 5'UTR-targetd RNA-binding proteins by RNA pulldown combined with LC-MS/MS, we found that FMR1 autosomal homolog 1 (FXR1) interacted with ARL6IP1 and mediated CNP-induced reduction of BACE1 by regulating the 5'UTR activity. Without altering the protein levels of ARL6IP1 and FXR1, CNP treatment promoted ARL6IP1 interaction with FXR1 and inhibited FXR1 binding to the 5'UTR both in vitro and in vivo. Collectively, CNP exhibited a therapeutic potential for AD via ARL6IP1. Through pharmacological manipulation, we uncovered a dynamic interaction between FXR1 and the 5'UTR in translational control of BACE1, adding to the understanding of the pathophysiology of AD.


Subject(s)
Alzheimer Disease , Animals , Mice , 5' Untranslated Regions , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Chromatography, Liquid , Fragile X Mental Retardation Protein/genetics , Protein Biosynthesis , Tandem Mass Spectrometry
4.
N Engl J Med ; 386(3): 252-263, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34767706

ABSTRACT

BACKGROUND: The relation between sodium intake and cardiovascular disease remains controversial, owing in part to inaccurate assessment of sodium intake. Assessing 24-hour urinary excretion over a period of multiple days is considered to be an accurate method. METHODS: We included individual-participant data from six prospective cohorts of generally healthy adults; sodium and potassium excretion was assessed with the use of at least two 24-hour urine samples per participant. The primary outcome was a cardiovascular event (coronary revascularization or fatal or nonfatal myocardial infarction or stroke). We analyzed each cohort using consistent methods and combined the results using a random-effects meta-analysis. RESULTS: Among 10,709 participants, who had a mean (±SD) age of 51.5±12.6 years and of whom 54.2% were women, 571 cardiovascular events were ascertained during a median study follow-up of 8.8 years (incidence rate, 5.9 per 1000 person-years). The median 24-hour urinary sodium excretion was 3270 mg (10th to 90th percentile, 2099 to 4899). Higher sodium excretion, lower potassium excretion, and a higher sodium-to-potassium ratio were all associated with a higher cardiovascular risk in analyses that were controlled for confounding factors (P≤0.005 for all comparisons). In analyses that compared quartile 4 of the urinary biomarker (highest) with quartile 1 (lowest), the hazard ratios were 1.60 (95% confidence interval [CI], 1.19 to 2.14) for sodium excretion, 0.69 (95% CI, 0.51 to 0.91) for potassium excretion, and 1.62 (95% CI, 1.25 to 2.10) for the sodium-to-potassium ratio. Each daily increment of 1000 mg in sodium excretion was associated with an 18% increase in cardiovascular risk (hazard ratio, 1.18; 95% CI, 1.08 to 1.29), and each daily increment of 1000 mg in potassium excretion was associated with an 18% decrease in risk (hazard ratio, 0.82; 95% CI, 0.72 to 0.94). CONCLUSIONS: Higher sodium and lower potassium intakes, as measured in multiple 24-hour urine samples, were associated in a dose-response manner with a higher cardiovascular risk. These findings may support reducing sodium intake and increasing potassium intake from current levels. (Funded by the American Heart Association and the National Institutes of Health.).


Subject(s)
Cardiovascular Diseases/etiology , Sodium, Dietary/adverse effects , Adult , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Female , Heart Disease Risk Factors , Humans , Incidence , Male , Middle Aged , Potassium/administration & dosage , Potassium/urine , Prospective Studies , Sodium/urine , Sodium, Dietary/administration & dosage
5.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36857616

ABSTRACT

With the emergence of multidrug-resistant bacteria, antimicrobial peptides (AMPs) offer promising options for replacing traditional antibiotics to treat bacterial infections, but discovering and designing AMPs using traditional methods is a time-consuming and costly process. Deep learning has been applied to the de novo design of AMPs and address AMP classification with high efficiency. In this study, several natural language processing models were combined to design and identify AMPs, i.e. sequence generative adversarial nets, bidirectional encoder representations from transformers and multilayer perceptron. Then, six candidate AMPs were screened by AlphaFold2 structure prediction and molecular dynamic simulations. These peptides show low homology with known AMPs and belong to a novel class of AMPs. After initial bioactivity testing, one of the peptides, A-222, showed inhibition against gram-positive and gram-negative bacteria. The structural analysis of this novel peptide A-222 obtained by nuclear magnetic resonance confirmed the presence of an alpha-helix, which was consistent with the results predicted by AlphaFold2. We then performed a structure-activity relationship study to design a new series of peptide analogs and found that the activities of these analogs could be increased by 4-8-fold against Stenotrophomonas maltophilia WH 006 and Pseudomonas aeruginosa PAO1. Overall, deep learning shows great potential in accelerating the discovery of novel AMPs and holds promise as an important tool for developing novel AMPs.


Subject(s)
Anti-Bacterial Agents , Deep Learning , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria , Antimicrobial Peptides , Gram-Positive Bacteria , Molecular Dynamics Simulation
6.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414246

ABSTRACT

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Subject(s)
Cartilage, Articular , Chondrocytes , Heterogeneous-Nuclear Ribonucleoprotein K , Hippo Signaling Pathway , Osteoarthritis , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Humans , Male , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Dependovirus/genetics , Disease Models, Animal , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology , Osteoarthritis/pathology , Osteoarthritis/therapy , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Nucleic Acids Res ; 51(15): 8283-8292, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37486765

ABSTRACT

As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.


Subject(s)
Genetic Techniques , Saccharomyces cerevisiae , Synthetic Biology , Life Cycle Stages , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Synthetic Biology/methods
8.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35972962

ABSTRACT

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Subject(s)
Biosensing Techniques , Nitric Oxide , Osteoarthritis , Wireless Technology , Animals , Biosensing Techniques/methods , Chronic Disease , Early Diagnosis , Electrochemical Techniques/methods , Electrodes , Nitric Oxide/analysis , Osteoarthritis/diagnosis , Rabbits
9.
Nano Lett ; 24(4): 1332-1340, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232321

ABSTRACT

Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect. The close-packed nanoparticle self-assembly layer can be rapidly formed on microstructure surfaces over a large area. Inspired by ink printing, a transfer printing strategy is further proposed to transform the self-assembly layer into conformal micropatterns. Large-area, high-resolution (2 µm), and ultrathin (1 µm) nanoparticle microelectronics can be stably fabricated, yielding a significant improvement over fluid printing methods. The unique deformability, recoverability, and scalability of nanoparticle microelectronics are revealed, providing promising opportunities for various academic and real applications.

10.
J Infect Dis ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271258

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS), a lethal tick-borne hemorrhagic fever, prompted our investigation into prognostic predictors and potential drug targets using plasma Olink Proteomics. METHODS: Employing the Olink assay, we analyzed 184 plasma proteins in 30 survivors and 8 non-survivors of SFTS. Validation was performed in a cohort of 154 SFTS patients using enzyme-linked immunosorbent assay. We utilized the Drug Gene Interaction database to identify protein-drug interactions. RESULTS: Non-survivors exhibited 110 differentially expressed proteins (DEPs) compared to survivors, with functional enrichment in the cell chemotaxis-related pathway. Thirteen DEPs, including C-C motif chemokine 20 (CCL20), calcitonin gene-related peptide alpha and Pleiotrophin, were associated with multiple organ dysfunction syndrome. CCL20 emerged as the top predictor of death, demonstrating an area under the curve of 1 (P = .0004) and 0.9033 (P < .0001) in the discovery and validation cohort, respectively. Patients with CCL20 levels exceeding 45.74 pg/mL exhibited a fatality rate of 45.65%, while no deaths occurred in those with lower CCL20 levels. Furthermore, we identified 202 FDA-approved drugs targeting 37 death-related plasma proteins. CONCLUSIONS: Distinct plasma proteomic profiles characterize SFTS patients with different outcomes, with CCL20 emerging as a novel, sensitive, accurate, and specific biomarker for predicting SFTS prognosis.

11.
J Cell Physiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721633

ABSTRACT

The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-ß (PDGFR-ß) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-ß is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-ß in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-ß on H-type vessels is mediated through the PDGFRß-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-ß facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-ß emerges as a promising therapeutic approach for the management of OP in the near future.

12.
Prostate ; 84(4): 376-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38116741

ABSTRACT

PURPOSE: The study aimed to investigate the diagnostic accuracy of prostate health index (PHI) and apparent diffusion coefficient (ADC) values in predicting prostate cancer (PCa) and construct a nomogram for the prediction of PCa and clinically significant PCa (CSPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) three lesions cohort. METHODS: This study prospectively enrolled 301 patients who underwent multiparametric magnetic resonance (mpMRI) and were scheduled for prostate biopsy. The receiver operating characteristic curve (ROC) was performed to estimate the diagnostic accuracy of each predictor. Univariable and multivariable logistic regression analysis was conducted to ascertain hidden risk factors and constructed nomograms in PI-RADS three lesions cohort. RESULTS: In the whole cohort, the area under the ROC curve (AUC) of PHI is relatively high, which is 0.779. As radiographic parameters, the AUC of PI-RADS and ADC values was 0.702 and 0.756, respectively. The utilization of PHI and ADC values either individually or in combination significantly improved the diagnostic accuracy of the basic model. In PI-RADS three lesions cohort, the AUC for PCa was 0.817 in the training cohort and 0.904 in the validation cohort. The AUC for CSPCa was 0.856 in the training cohort and 0.871 in the validation cohort. When applying the nomogram for predicting PCa, 50.0% of biopsies could be saved, supplemented by 6.9% of CSPCa being missed. CONCLUSION: PHI and ADC values can be used as predictors of CSPCa. The nomogram included PHI, ADC values and other clinical predictors demonstrated an enhanced capability in detecting PCa and CSPCa within PI-RADS three lesions cohort.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Magnetic Resonance Imaging , Prostatic Neoplasms/pathology , Prostate-Specific Antigen/analysis , Retrospective Studies , Biopsy
13.
Cancer ; 130(12): 2169-2179, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38319287

ABSTRACT

BACKGROUND: Use of multivitamin supplements has been associated with lower incidence of colorectal cancer (CRC). However, its influence on CRC survival remains unknown. METHODS: Among 2424 patients with stage I-III CRC who provided detailed information about multivitamin supplements in the Nurses' Health Study and Health Professionals Follow-up Study, the authors calculated multivariable hazard ratios (HRs) of multivitamin supplements for all-cause and CRC-specific mortality according to post-diagnostic use and dose of multivitamin supplements. RESULTS: During a median follow-up of 11 years, the authors documented 1512 deaths, among which 343 were of CRC. Compared to non-users, post-diagnostic users of multivitamin supplements at a dose of 3-5 tablets/week had lower CRC-specific mortality (HR, 0.55; 95% confidence interval [CI], 0.36-0.83, p = .005), and post-diagnostic users at doses of 3-5 and 6-9 tablets/week had lower all-cause mortality (HR, 0.81; 95% CI, 0.67-0.99, p = .04; HR, 0.79; 95% CI, 0.70-0.88), p < .001). The dose-response analysis showed a curvilinear relationship for both CRC-specific (pnonlinearity < .001) and all-cause mortality (pnonlinearity = .004), with the maximum risk reduction observed at 3-5 tablets/week and no further reduction at higher doses. Compared to non-users in both pre- and post-diagnosis periods, new post-diagnostic users at dose of <10 tablets/week had a lower all-cause mortality (HR, 0.81; 95% CI, 0.71-0.94, p = .005), whereas new users at a dose of ≥10 tablets/week (HR, 1.58; 95% CI, 1.07-2.33) and discontinued users (HR, 1.35; 95% CI, 1.14-1.59) had a higher risk of mortality. CONCLUSIONS: Use of multivitamin supplements at a moderate dose after a diagnosis of nonmetastatic CRC is associated with lower CRC-specific and overall mortality, whereas a high dose (≥10 tablets/week) use is associated with higher CRC-specific mortality.


Subject(s)
Colorectal Neoplasms , Dietary Supplements , Vitamins , Humans , Colorectal Neoplasms/mortality , Colorectal Neoplasms/diagnosis , Female , Vitamins/administration & dosage , Prospective Studies , Male , Middle Aged , Aged , Adult , Follow-Up Studies , Proportional Hazards Models
14.
Gastroenterology ; 165(4): 1025-1040, 2023 10.
Article in English | MEDLINE | ID: mdl-37380136

ABSTRACT

BACKGROUND & AIMS: This study aimed to estimate the prevalence of liver steatosis and fibrosis in the general population and populations with potential risk factors in China, so as to inform policies for the screening and management of fatty liver disease and liver fibrosis in general and high-risk populations. METHODS: This cross-sectional, population-based, nationwide study was based on the database of the largest health check-up chain in China. Adults from 30 provinces who underwent a check-up between 2017 and 2022 were included. Steatosis and fibrosis were assessed and graded by transient elastography. Overall and stratified prevalence was estimated among the general population and various subpopulations with demographic, cardiovascular, and chronic liver disease risk factors. A mixed effect regression model was used to examine predictors independently associated with steatosis and fibrosis. RESULTS: In 5,757,335 participants, the prevalence of steatosis, severe steatosis, advanced fibrosis, and cirrhosis was 44.39%, 10.57%, 2.85%, and 0.87%, respectively. Participants who were male, with obesity, diabetes, hypertension, dyslipidemia, metabolic syndrome, or elevated alanine aminotransferase or aspartate aminotransferase had a significantly higher prevalence of all grades of steatosis and fibrosis, and those with fatty liver, decreased albumin or platelet count, and hepatitis B virus infection also had a significantly higher prevalence of fibrosis than their healthy counterparts. Most cardiovascular and chronic liver disease risk factors were independent predictors for steatosis and fibrosis, except for dyslipidemia for fibrosis. CONCLUSIONS: A substantial burden of liver steatosis and fibrosis was found in China. Our study provides evidence for shaping future pathways for screening and risk stratification of liver steatosis and fibrosis in the general population. The findings of this study highlight that fatty liver and liver fibrosis should be included in disease management programs as targets for screening and regular monitoring in high-risk populations, especially in those with diabetes.


Subject(s)
Diabetes Mellitus , Dyslipidemias , Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Adult , Male , Female , Prevalence , Cross-Sectional Studies , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/epidemiology , China/epidemiology , Dyslipidemias/epidemiology , Liver/pathology
15.
J Transl Med ; 22(1): 604, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951906

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a recurrent, heterogeneous, and invasive form of breast cancer. The treatment of TNBC patients with paclitaxel and fluorouracil in a sequential manner has shown promising outcomes. However, it is challenging to deliver these chemotherapeutic agents sequentially to TNBC tumors. We aim to explore a precision therapy strategy for TNBC through the sequential delivery of paclitaxel and fluorouracil. METHODS: We developed a dual chemo-loaded aptamer with redox-sensitive caged paclitaxel for rapid release and non-cleavable caged fluorouracil for slow release. The binding affinity to the target protein was validated using Enzyme-linked oligonucleotide assays and Surface plasmon resonance assays. The targeting and internalization abilities into tumors were confirmed using Flow cytometry assays and Confocal microscopy assays. The inhibitory effects on TNBC progression were evaluated by pharmacological studies in vitro and in vivo. RESULTS: Various redox-responsive aptamer-paclitaxel conjugates were synthesized. Among them, AS1411-paclitaxel conjugate with a thioether linker (ASP) exhibited high anti-proliferation ability against TNBC cells, and its targeting ability was further improved through fluorouracil modification. The fluorouracil modified AS1411-paclitaxel conjugate with a thioether linker (FASP) exhibited effective targeting of TNBC cells and significantly improved the inhibitory effects on TNBC progression in vitro and in vivo. CONCLUSIONS: This study successfully developed fluorouracil-modified AS1411-paclitaxel conjugates with a thioether linker for targeted combination chemotherapy in TNBC. These conjugates demonstrated efficient recognition of TNBC cells, enabling targeted delivery and controlled release of paclitaxel and fluorouracil. This approach resulted in synergistic antitumor effects and reduced toxicity in vivo. However, challenges related to stability, immunogenicity, and scalability need to be further investigated for future translational applications.


Subject(s)
Aptamers, Nucleotide , Delayed-Action Preparations , Drug Liberation , Fluorouracil , Nucleolin , Paclitaxel , Phosphoproteins , RNA-Binding Proteins , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry , Humans , Paclitaxel/therapeutic use , Paclitaxel/pharmacology , Cell Line, Tumor , Animals , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , RNA-Binding Proteins/metabolism , Phosphoproteins/metabolism , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mice, Nude , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Oxidation-Reduction/drug effects , Mice, Inbred BALB C
16.
J Med Virol ; 96(6): e29722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837255

ABSTRACT

Debates surrounding the efficacy of influenza vaccination for survival benefits persist, and there is a lack of data regarding its duration of protection. A self-controlled case series (SCCS) and a 1:4 matched case-control study were conducted using the National Health Interview Survey (NHIS) and public-use mortality data from 2005 to 2018 in the United States. The SCCS study identified participants who received influenza vaccination within 12 months before the survey and subsequently died within 1 year of postvaccination. The matched case-control study paired participants who died during the influenza season at the time of survey with four survivors. Among 1167 participants in the SCCS study, there was a 46% reduction in all-cause mortality and a 43% reduction in cardiovascular mortality within 29-196 days of postvaccination. The greatest protection was observed during days 29-56 (all-cause mortality: RI: 0.19; 95% CI: 0.12-0.29; cardiovascular mortality: RI: 0.28; 95% CI: 0.14-0.56). Among 626 cases and 2504 controls included in the matched case-control study, influenza vaccination was associated with a reduction in all-cause mortality (OR: 0.74, 95% CI: 0.60-0.92) and cardiovascular mortality (OR: 0.64, 95% CI: 0.44-0.93) during the influenza season. This study highlights the importance of influenza vaccination in reducing the risks of all-cause and cardiovascular mortality, with effects lasting for approximately 6 months.


Subject(s)
Cardiovascular Diseases , Influenza Vaccines , Influenza, Human , Vaccination , Humans , Case-Control Studies , Influenza Vaccines/administration & dosage , Male , Female , Influenza, Human/mortality , Influenza, Human/prevention & control , Cardiovascular Diseases/mortality , Cardiovascular Diseases/prevention & control , Middle Aged , Aged , Vaccination/statistics & numerical data , Adult , United States/epidemiology , Aged, 80 and over , Young Adult
17.
Plant Cell Environ ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012193

ABSTRACT

AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.

18.
Ann Neurol ; 94(1): 13-26, 2023 07.
Article in English | MEDLINE | ID: mdl-36966451

ABSTRACT

INTRODUCTION: Lower education is associated with higher burden of vascular risk factors in mid-life and higher risk of dementia in late life. We aim to understand the causal mechanism through which vascular risk factors potentially mediate the relationship between education and dementia. METHODS: In a cohort of 13,368 Black and White older adults in the Atherosclerosis Risk in Communities Study, we assessed the relationship between education (grade school, high school without graduation, high school graduate or equivalent, college, graduate/professional school) and dementia among all participants and among those with incident stroke. Cox models were adjusted for age, race-center (a variable stratified by race and field center), sex, apolipoprotein E (APOE) ε4 genotype, and family history of cardiovascular disease. Causal mediation models assessed mediation by mid-life systolic blood pressure, fasting blood glucose, body mass index, and smoking. RESULTS: More education was associated with 8 to 44% lower risk of dementia compared to grade school-level education in a dose-response pattern, while the relationship between education and post-stroke dementia was not statistically significant. Up to 25% of the association between education and dementia was mediated through mid-life vascular risk factors, with a smaller percentage mediated for lower levels of education. INTERPRETATION: A substantial proportion of the relationship between education and dementia was mediated through mid-life vascular risk factors. However, risk factor modification is unlikely to fully address the large educational disparities in dementia risk. Prevention efforts must also address disparities in socioeconomic resources leading to divergent early-life education and other structural determinants of mid-life vascular risk factors. ANN NEUROL 2023;94:13-26.


Subject(s)
Dementia , Aged , Humans , Apolipoprotein E4/genetics , Cardiovascular Diseases , Educational Status , Risk Factors , Stroke , Dementia/epidemiology , Black or African American , White
19.
Phys Rev Lett ; 132(23): 232502, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905669

ABSTRACT

We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.

20.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701465

ABSTRACT

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

SELECTION OF CITATIONS
SEARCH DETAIL