Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861592

ABSTRACT

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Subject(s)
Carcinoma, Renal Cell , Drug Resistance, Neoplasm , Kidney Neoplasms , Mechanistic Target of Rapamycin Complex 1 , TOR Serine-Threonine Kinases , Animals , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Mice , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Cell Line, Tumor , Sirolimus/pharmacology , Mutation , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use
2.
Environ Res ; 258: 119433, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38889838

ABSTRACT

The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Despite this situation, the responses of macrobenthos under hypoxic conditions remain poorly understood. In this study, we conducted a long-term observation (2015-2022) to investigate the intricate impact of summer hypoxia on macrobenthic communities in a semi-enclosed bay of the North Yellow Sea. Comparative analyses revealed higher macrobenthos abundance (1956.8 ± 1507.5 ind./m2 vs. 871.8 ± 636.9 ind./m2) and biomass (8.2 ± 4.1 g/m2 vs. 5.6 ± 3.2 g/m2) at hypoxic sites compared to normoxic sites during hypoxic years. Notably, polychaete species demonstrated remarkable adaptability, dominating hypoxic sites, and shaping community structure. The decline in biodiversity underscored the vulnerability and diminished resilience of macrobenthic communities to hypoxic stressors. Stable isotope analysis provided valuable insights into food web structures. The average trophic level of macrobenthos measured 2.84 ± 0.70 at hypoxic sites, contrasting with the higher value of 3.14 ± 0.74 observed at normoxic sites, indicating the absence of predators at high trophic levels under hypoxic conditions. Moreover, trophic interactions were significantly altered, resulting in a simplified and more vulnerable macrobenthic trophic structure. The findings underscored the importance of comprehensive research to understand the complex responses of macrobenthic communities to hypoxia, thereby informing future conservation efforts in impacted ecosystems.


Subject(s)
Bays , Biodiversity , Invertebrates , Seasons , China , Animals , Environmental Monitoring , Food Chain , Biomass , Oxygen/metabolism , Oxygen/analysis
3.
Nature ; 539(7627): 112-117, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27595394

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1ß) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1ß, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Indans/pharmacology , Indans/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Sulfones/pharmacology , Sulfones/therapeutic use , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/drug effects , Erythropoietin/antagonists & inhibitors , Erythropoietin/blood , Female , Gene Expression Regulation, Neoplastic , Humans , Indans/administration & dosage , Indoles/pharmacology , Indoles/therapeutic use , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Mutation , Pyrroles/pharmacology , Pyrroles/therapeutic use , Reproducibility of Results , Sulfones/administration & dosage , Sunitinib , Xenograft Model Antitumor Assays
4.
Environ Res ; 203: 111793, 2022 01.
Article in English | MEDLINE | ID: mdl-34339694

ABSTRACT

Considering the ecological risks of polycyclic aromatic hydrocarbons (PAHs) to the marine environment, it is urgent to find scientific and effective monitoring methods. In this study, an integrated approach combining chemical ecological risk assessment and multi-integrated biomarker indexes approach was used to assess the marine environment. Samples included seawater, sediments, and clam Ruditapes philippinarum were collected from four bays on the Shandong Peninsula, China in the four seasons of 2019. The concentrations, composition, potential sources, and ecological risk of PAHs were investigated in seawater and sediments. Risk quotient (RQ) and sediment quality guidelines (SQGs) were calculated to assess the ecological risks of PAHs in seawater and sediment, respectively. And then, clam Ruditapes philippinarum's multi-level biological response, including its ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), lipid peroxidation (LPO), and acetylcholinesterase (AChE) were investigated in-depth, by which multi-integrated biomarker indexes approach were calculated to evaluate marine environmental quality. Taken together, the results showed that the concentration of PAHs was in good agreement with the response of biomarkers, and the usefulness of the combined use of chemical ecological risk assessment and integrated biomarker indexes to assess PAHs pollution was verified.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Bays , Biomarkers , China , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
J Environ Sci (China) ; 111: 24-37, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949353

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), as persistent toxic substances (PTS), have been widely monitored in coastal environment, including seawater and sediment. However, scientific monitoring methods, like ecological risk assessment and integrated biomarker response, still need massive researches to verify their availabilities. This study was performed in March, May, August and October of 2018 at eight sites, Yellow River estuary (S1), Guangli Port (S2), Xiaying (S3), Laizhou (S4), Inner Bay (S5), Outer Bay (S6), Hongdao (S7) and Hongshiya (S8) of Shandong Peninsula, China. The contents of 16 priority PAHs in local seawater and sediment were determined, by which ecological risk assessment risk quotient (RQ) for seawater and sediment quality guidelines (SQGs) were calculated to characterize the PAHs pollution. Meanwhile, multiple biomarkers in the digestive gland of clam Ruditapes philippinarum were measured to represent different biological endpoints, including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), sulfotransferase (SULT), superoxide dismutase (SOD) and lipid peroxidation (LPO), by which integrated biomarker response (IBR) was calculated to provide a comprehensive assessment of environmental quality. Taken together, these results revealed the heaviest pollution at S2 as both PAHs concentrations and biomarkers responses reflected, and supported the integrated biomarker response as a useful tool for marine environmental monitoring, through its integration with SQGs.


Subject(s)
Bivalvia , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Biomarkers , China , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
6.
J Cell Sci ; 132(4)2019 02 11.
Article in English | MEDLINE | ID: mdl-30745330

ABSTRACT

The essential function of the T cell receptor (TCR) is to translate the engagement of peptides on the major histocompatibility complex (pMHC) into appropriate intracellular signals through the associated cluster of differentiation 3 (CD3) complex. The spatial organization of the TCR-CD3 complex in the membrane is thought to be a key regulatory element of signal transduction, raising the question of how receptor clustering impacts on TCR triggering. How signal transduction at the TCR-CD3 complex encodes the quality and quantity of pMHC molecules is not fully understood. This question can be approached by reconstituting T cell signaling in model and cell membranes and addressed by single-molecule imaging of endogenous proteins in T cells. We highlight such methods and further discuss how TCR clustering could affect pMHC rebinding rates, the local balance between kinase and phosphatase activity and/or the lipid environment to regulate the signal efficiency of the TCR-CD3 complex. We also examine whether clustering could affect the conformation of cytoplasmic CD3 tails through a biophysical mechanism. Taken together, we highlight how the spatial organization of the TCR-CD3 complex - addressed by reconstitution approaches - has emerged as a key regulatory element in signal transduction of this archetypal immune receptor.


Subject(s)
CD3 Complex/immunology , Major Histocompatibility Complex , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD3 Complex/chemistry , CD3 Complex/metabolism , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Humans , Leukocyte Common Antigens/chemistry , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Models, Biological , Protein Binding , Protein Transport , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Single Molecule Imaging/methods , T-Lymphocytes/metabolism , T-Lymphocytes/ultrastructure
7.
Anal Chem ; 93(8): 3803-3812, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33590750

ABSTRACT

How nanoparticles distribute in living cells and overcome cellular barriers are important criteria in the design of drug carriers. Pair-correlation microscopy is a correlation analysis of fluctuation in the fluorescence intensity obtained by a confocal line scan that can quantify the dynamic properties of nanoparticle diffusion including the number of mobile nanoparticles, diffusion coefficient, and transit time across a spatial distance. Due to the potential heterogeneities in nanoparticle properties and the complexity within the cellular environment, quantification of averaged auto- and pair-correlation profiles may obscure important insights into the ability of nanoparticles to deliver drugs. To overcome this issue, we used phasor analysis to develop a data standardizing method, which can segment the scanned line into several subregions according to diffusion and address the spatial heterogeneity of nanoparticles moving inside cells. The phasor analysis is a fit-free method that represents autocorrelation profiles for each pixel relative to free diffusion on the so-called phasor plots. Phasor plots can then be used to select subpopulations for which the auto- and pair-correlation analysis can be performed separately. We demonstrate the phasor analysis for pair-correlation microscopy for investigating 16 nm, Cy5-labeled silica nanoparticles diffusing across the plasma membrane and green fluorescent proteins (GFP) diffusing across nuclear envelope in MCF-7 cells.


Subject(s)
Nanoparticles , Diffusion , Drug Carriers , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Silicon Dioxide
8.
Biophys J ; 118(6): 1489-1501, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32097620

ABSTRACT

T cell receptor phosphorylation by Lck is an essential step in T cell activation. It is known that the conformational states of Lck control enzymatic activity; however, the underlying principles of how Lck finds its substrate over the plasma membrane remain elusive. Here, single-particle tracking is paired with photoactivatable localization microscopy to observe the diffusive modes of Lck in the plasma membrane. Individual Lck molecules switched between free and confined diffusion in both resting and stimulated T cells. Lck mutants locked in the open conformation were more confined than Lck mutants in the closed conformation. Further confinement of kinase-dead versions of Lck suggests that Lck confinement was not caused by phosphorylated substrates. Our data support a model in which confined diffusion of open Lck results in high local phosphorylation rates, and inactive, closed Lck diffuses freely to enable long-range distribution over the plasma membrane.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Receptors, Antigen, T-Cell , Humans , Jurkat Cells , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phosphorylation , Receptors, Antigen, T-Cell/metabolism
9.
Int J Mol Sci ; 21(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429097

ABSTRACT

T cell activation is initiated when ligand binding to the T cell receptor (TCR) triggers intracellular phosphorylation of the TCR-CD3 complex. However, it remains unknown how biophysical properties of TCR engagement result in biochemical phosphorylation events. Here, we constructed an optogenetic tool that induces spatial clustering of ζ-chain in a light controlled manner. We showed that spatial clustering of the ζ-chain intracellular tail alone was sufficient to initialize T cell triggering including phosphorylation of ζ-chain, Zap70, PLCγ, ERK and initiated Ca2+ flux. In reconstituted COS-7 cells, only Lck expression was required to initiate ζ-chain phosphorylation upon ζ-chain clustering, which leads to the recruitment of tandem SH2 domain of Zap70 from cell cytosol to the newly formed ζ-chain clusters at the plasma membrane. Taken together, our data demonstrated the biophysical relevance of receptor clustering in TCR signaling.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Amino Acid Motifs , Animals , COS Cells , Calcium/metabolism , Cell Membrane/metabolism , Chlorocebus aethiops , Cluster Analysis , Cytosol/metabolism , Diffusion , Green Fluorescent Proteins/metabolism , Humans , Jurkat Cells , Light , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Optogenetics , Phosphorylation , Receptors, Antigen, T-Cell/chemistry , Spectrometry, Fluorescence
10.
Biochemistry ; 58(7): 974-986, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30585477

ABSTRACT

The heme enzyme indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the first reaction of l-tryptophan oxidation along the kynurenine pathway. IDO1 is a central immunoregulatory enzyme with important implications for inflammation, infectious disease, autoimmune disorders, and cancer. Here we demonstrate that IDO1 is a mammalian nitrite reductase capable of chemically reducing nitrite to nitric oxide (NO) under hypoxia. Ultraviolet-visible absorption and resonance Raman spectroscopy showed that incubation of dithionite-reduced, ferrous-IDO1 protein (FeII-IDO1) with nitrite under anaerobic conditions resulted in the time-dependent formation of an FeII-nitrosyl IDO1 species, which was inhibited by substrate l-tryptophan, dependent on the concentration of nitrite or IDO1, and independent of the concentration of the reductant, dithionite. The bimolecular rate constant for IDO1 nitrite reductase activity was determined as 5.4 M-1 s-1 (pH 7.4, 23 °C), which was comparable to that measured for myoglobin (3.6 M-1 s-1; pH 7.4, 23 °C), an efficient and biologically important mammalian heme-based nitrite reductase. IDO1 nitrite reductase activity was pH-dependent but differed with myoglobin in that it showed a reduced proton dependency at pH >7. Electron paramagnetic resonance studies measuring NO production showed that the conventional IDO1 dioxygenase reducing cofactors, ascorbate and methylene blue, enhanced IDO1's nitrite reductase activity and the time- and IDO1 concentration-dependent release of NO in a manner inhibited by l-tryptophan or the IDO inhibitor 1-methyl-l-tryptophan. These data identify IDO1 as an efficient mammalian nitrite reductase that is capable of generating NO under anaerobic conditions. IDO1's nitrite reductase activity may have important implications for the enzyme's biological actions when expressed within hypoxic tissues.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Nitrite Reductases/metabolism , Anaerobiosis , Electron Spin Resonance Spectroscopy , Heme/chemistry , Heme/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitrite Reductases/chemistry , Nitrites/chemistry , Nitrites/metabolism , Protons , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL