Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 51(6): 1119-1135.e5, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757672

ABSTRACT

T cells play important multifaceted roles during dengue infection, and understanding their responses is important for defining correlates of protective immunity and identifying effective vaccine antigens. Using mass cytometry and a highly multiplexed peptide-HLA (human leukocyte antigen) tetramer staining strategy, we probed T cells from dengue patients-a total of 430 dengue and control candidate epitopes-together with key markers of activation, trafficking, and differentiation. During acute disease, dengue-specific CD8+ T cells expressed a distinct profile of activation and trafficking receptors that distinguished them from non-dengue-specific T cells. During convalescence, dengue-specific T cells differentiated into two major cell fates, CD57+ CD127--resembling terminally differentiated senescent memory cells and CD127+ CD57--resembling proliferation-capable memory cells. Validation in an independent cohort showed that these subsets remained at elevated frequencies up to one year after infection. These analyses aid our understanding of the generation of T cell memory in dengue infection or vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , HLA Antigens/immunology , Adult , B-Lymphocytes/immunology , CD57 Antigens/metabolism , Cell Differentiation/immunology , Cell Proliferation/physiology , Epitopes, T-Lymphocyte/immunology , Female , HLA Antigens/classification , Humans , Immunologic Memory/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Male , Middle Aged
2.
J Infect Dis ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421006

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.

3.
J Med Virol ; 95(1): e28258, 2023 01.
Article in English | MEDLINE | ID: mdl-36305052

ABSTRACT

Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Middle Aged , SARS-CoV-2/genetics , BNT162 Vaccine , COVID-19/prevention & control , mRNA Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
4.
Int J Mol Sci ; 23(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457159

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global public health crisis. Effective COVID-19 vaccines developed by Pfizer-BioNTech, Moderna, and Astra Zeneca have made significant impacts in controlling the COVID-19 burden, especially in reducing the transmission of SARS-CoV-2 and hospitalization incidences. In view of the emergence of new SARS-CoV-2 variants, vaccines developed against the Wuhan strain were less effective against the variants. Neutralizing antibodies produced by B cells are a critical component of adaptive immunity, particularly in neutralizing viruses by blocking virus attachment and entry into cells. Therefore, the identification of protective linear B-cell epitopes can guide epitope-based peptide designs. This study reviews the identification of SARS-CoV-2 B-cell epitopes within the spike, membrane and nucleocapsid proteins that can be incorporated as potent B-cell epitopes into peptide vaccine constructs. The bioinformatic approach offers a new in silico strategy for the mapping and identification of potential B-cell epitopes and, upon in vivo validation, would be useful for the rapid development of effective multi-epitope-based vaccines. Potent B-cell epitopes were identified from the analysis of three-dimensional structures of monoclonal antibodies in a complex with SARS-CoV-2 from literature mining. This review provides significant insights into the elicitation of potential neutralizing antibodies by potent B-cell epitopes, which could advance the development of multi-epitope peptide vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Computational Biology , Epitopes, B-Lymphocyte , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit
5.
J Virol ; 91(17)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28637753

ABSTRACT

A detailed understanding of the fine specificity of serotype-specific human antibodies is vital for the development and evaluation of new vaccines for pathogenic flaviviruses such as dengue virus (DENV) and Zika virus. In this study, we thoroughly characterize the structural footprint of an anti-idiotype antibody (E1) specific for a potent, fully human DENV serotype 1-specific antibody, termed HM14c10, derived from a recovered patient. The crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 provides the first detailed molecular comparison of an anti-idiotype paratope specific for a human antibody with its analogous epitope, a discontinuous quaternary structure located at the surface of the viral particle that spans adjacent envelope (E) proteins. This comparison reveals that the footprints left by E1 and E on HM14c10 largely overlap, explaining why the formation of binary complexes is mutually exclusive. Structural mimicry of the DENV E epitope by the E1 combining site is achieved via the formation of numerous interactions with heavy chain complementarity domain regions (CDRs) of HM14c10, while fewer interactions are observed with its light chain than for the E protein. We show that E1 can be utilized to detect HM14c10-like antibodies in sera from patients who recovered from DENV-1, infection suggesting that this is a public (common) idiotype. These data demonstrate the utility of employing an anti-idiotype antibody to monitor a patient's specific immune responses and suggest routes for the improvement of E "mimicry" by E1 by increasing its recognition of the Fab HM14c10 light chain CDRs.IMPORTANCE A chimeric yellow fever-dengue live-attenuated tetravalent vaccine is now being marketed. Dengue remains a significant public health problem, because protection conferred by this vaccine against the four circulating serotypes is uneven. Reliable tools must be developed to measure the immune responses of individuals exposed to DENV either via viral infection or through vaccination. Anti-idiotypic antibodies provide precision tools for analyzing the pharmacokinetics of antibodies in an immune response and also for measuring the amount of circulating anti-infective therapeutic antibodies. Here, we characterize how an anti-idiotypic antibody (E1) binds antibody HM14c10, which potently neutralizes DENV serotype 1. We report the crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 and provide the first detailed molecular comparison between the anti-idiotype surface and its analogous epitope located at the surface of the dengue virus particle.

6.
Blood ; 128(10): 1396-407, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27338099

ABSTRACT

Epstein-Barr virus (EBV) is an oncovirus associated with several human malignancies including posttransplant lymphoproliferative disease in immunosuppressed patients. We show here that anti-EBV T-cell receptor-like monoclonal antibodies (TCR-like mAbs) E1, L1, and L2 bound to their respective HLA-A*0201-restricted EBV peptides EBNA1562-570, LMP1125-133, and LMP2A426-434 with high affinities and specificities. These mAbs recognized endogenously presented targets on EBV B lymphoblastoid cell lines (BLCLs), but not peripheral blood mononuclear cells, from which they were derived. Furthermore, these mAbs displayed similar binding activities on several BLCLs, despite inherent heterogeneity between different donor samples. A single weekly administration of the naked mAbs reduced splenomegaly, liver tumor spots, and tumor burden in BLCL-engrafted immunodeficient NOD-SCID/Il2rg(-/-) mice. In particular, mice that were treated with the E1 mAb displayed a delayed weight loss and significantly prolonged survival. In vitro, these TCR-like mAbs induced early apoptosis of BLCLs, thereby enhancing their Fc-dependent phagocytic uptake by macrophages. These data provide evidence for TCR-like mAbs as potential therapeutic modalities to target EBV-associated diseases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , HLA-A2 Antigen/immunology , Herpesvirus 4, Human/immunology , Liver Neoplasms/prevention & control , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Flow Cytometry , Humans , Leukocytes, Mononuclear/immunology , Liver Neoplasms/immunology , Liver Neoplasms/virology , Mice , Mice, Inbred NOD , Mice, SCID , Phagocytosis/immunology
7.
J Immunol ; 197(10): 3771-3781, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27733553

ABSTRACT

Previous studies have highlighted the importance of lung-draining lymph nodes in the respiratory allergic immune response, whereas the lung parenchymal immune system has been largely neglected. We describe a new in vivo model of respiratory sensitization to Blomia tropicalis, the principal asthma allergen in the tropics, in which the immune response is focused on the lung parenchyma by transfer of Th2 cells from a novel TCR transgenic mouse, specific for the major B. tropicalis allergen Blo t 5, that targets the lung rather than the draining lymph nodes. Transfer of highly polarized transgenic CD4 effector Th2 cells, termed BT-II, followed by repeated inhalation of Blo t 5 expands these cells in the lung >100-fold, and subsequent Blo t 5 challenge induced decreased body temperature, reduction in movement, and a fall in specific lung compliance unseen in conventional mouse asthma models following a physiological allergen challenge. These mice exhibit lung eosinophilia; smooth muscle cell, collagen, and goblet cell hyperplasia; hyper IgE syndrome; mucus plugging; and extensive inducible BALT. In addition, there is a fall in total lung volume and forced expiratory volume at 100 ms. These pathophysiological changes were substantially reduced and, in some cases, completely abolished by administration of neutralizing mAbs specific for IL-4 and IL-13 on weeks 1, 2, and 3. This IL-4/IL-13-dependent inducible BALT model will be useful for investigating the pathophysiological mechanisms that underlie asthma and the development of more effective drugs for treating severe asthma.


Subject(s)
Acaridae/immunology , Allergens/immunology , Asthma/immunology , Interleukin-13/immunology , Interleukin-4/immunology , Lung/immunology , Lymphoid Tissue/immunology , Th2 Cells/immunology , Adoptive Transfer , Allergens/administration & dosage , Animals , Asthma/physiopathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Immunoglobulin E , Interleukin-13/administration & dosage , Interleukin-4/administration & dosage , Lung/cytology , Lung/pathology , Lymph Nodes/immunology , Mice , Mice, Transgenic , Pulmonary Eosinophilia/immunology , Receptors, Antigen, T-Cell/immunology
8.
J Immunol ; 194(8): 3890-900, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25732728

ABSTRACT

Little is known about the cellular mechanisms of innate immunity against dengue virus (DV) infection. Specifically, the γδ T cell response to DV has not been characterized in detail. In this article, we demonstrate that markers of activation, proliferation, and degranulation are upregulated on γδ T cells in PBMC isolated from individuals with acute dengue fever. Primary γδ T cells responded rapidly in vitro to autologous DV-infected dendritic cells by secreting IFN-γ and upregulating CD107a. The anti-DV IFN-γ response is regulated by type I IFN and IL-18 in a TCR-independent manner, and IFN-γ secreting γδ T cells predominantly expressed IL-18Rα. Antagonizing the ATP-dependent P2X7 receptor pathway of inflammasome activation significantly inhibited the anti-DV IFN-γ response of γδ T cells. Overnight priming with IL-18 produced effector γδ T cells with significantly increased ability to lyse autologous DV-infected dendritic cells. Monocytes were identified as accessory cells that augmented the anti-DV IFN-γ response of γδ T cells. Lack of monocytes in culture is associated with lower IL-18 levels in culture supernatant and diminished production of IFN-γ by γδ T cells, whereas addition of exogenous IL-18 restored the IFN-γ response of γδ T cells in monocyte-depleted cocultures with DV-infected DC. Our results indicate that primary γδ T cells contribute to the immune response during DV infection by providing an early source of IFN-γ, as well as by killing DV-infected cells, and suggest that monocytes participate as accessory cells that sense DV infection and amplify the cellular immune response against this virus in an IL-18-dependent manner.


Subject(s)
Dendritic Cells/immunology , Dengue Virus/immunology , Dengue/immunology , Interleukin-18/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Adult , Coculture Techniques , Dendritic Cells/pathology , Dengue/pathology , Female , Humans , Interferon Type I , Interferon-gamma/immunology , Interleukin-18 Receptor alpha Subunit/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Male , Monocytes/immunology , Monocytes/pathology , Receptors, Purinergic P2X7/immunology , T-Lymphocytes/pathology
9.
Immunology ; 144(4): 549-60, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25314332

ABSTRACT

Antigen-specific multifunctional T cells that secrete interferon-γ, interleukin-2 and tumour necrosis factor-α simultaneously after activation are important for the control of many infections. It is unclear if these CD8(+) T cells are at an early or late stage of differentiation and whether telomere erosion restricts their replicative capacity. We developed a multi-parameter flow cytometric method for investigating the relationship between differentiation (CD45RA and CD27 surface phenotype), function (cytokine production) and replicative capacity (telomere length) in individual cytomegalovirus (CMV) antigen-specific CD8(+) T cells. This involves surface and intracellular cell staining coupled to fluorescence in situ hybridization to detect telomeres (flow-FISH). The end-stage/senescent CD8(+)  CD45RA(+)  CD27(-) T-cell subset increases significantly during ageing and this is exaggerated in CMV immune-responsive subjects. However, these end-stage cells do not have the shortest telomeres, implicating additional non-telomere-related mechanisms in inducing their senescence. The telomere lengths in total and CMV (NLV)-specific CD8(+) T cells in all four subsets defined by CD45RA and CD27 expression were significantly shorter in old compared with young individuals in both a Caucasian and an Asian cohort. Following stimulation by anti-CD3 or NLV peptide, similar proportions of triple-cytokine-producing cells are found in CD8(+) T cells at all stages of differentiation in both age groups. Furthermore, these multi-functional cells had intermediate telomere lengths compared with cells producing only one or two cytokines after activation. Therefore, global and CMV (NLV)-specific CD8(+) T cells that secrete interferon-γ, interleukin-2 and tumour necrosis factor-α are at an intermediate stage of differentiation and are not restricted by excessive telomere erosion.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Lymphocyte Activation , Telomere Shortening , Telomere/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Aging/ethnology , Aging/genetics , Asian People/genetics , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Flow Cytometry , Humans , Immunophenotyping/methods , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , London , Phenotype , Singapore , Telomere/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , White People/genetics , Young Adult
10.
Int Immunol ; 26(12): 649-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25135889

ABSTRACT

Phage display involves the expression of selected proteins on the surface of filamentous phage through fusion with phage coat protein, with the genetic sequence packaged within, linking phenotype to genotype selection. When combined with antibody libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and recovery of their corresponding coding sequence. Large non-immune and synthetic human libraries have been constructed as well as smaller immune libraries based on capturing a single individual's immune repertoire. This completely in vitro process allows for isolation of antibodies against poorly immunogenic targets as well as those that cannot be obtained by animal immunization, thus further expanding the utility of the approach. Phage antibody display represents the first developed methodology for high throughput screening for human therapeutic antibody candidates. Recently, other methods have been developed for generation of fully human therapeutic antibodies, such as single B-cell screening, next-generation genome sequencing and transgenic mice with human germline B-cell genes. While each of these have their particular advantages, phage display has remained a key methodology for human antibody discovery due its in vitro process. Here, we review the continuing role of this technique alongside other developing technologies for therapeutic antibody discovery.


Subject(s)
Antibodies, Monoclonal , Cell Surface Display Techniques , Drug Discovery , Peptide Library , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Autoantigens/immunology , Biotechnology , Carbohydrates/immunology , Drug Evaluation, Preclinical , Humans , Lipids/immunology , Proteins/immunology , Proteins/metabolism
11.
J Immunol ; 191(8): 4010-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24058176

ABSTRACT

The identification of virus-specific CD8(+) T cell determinants is a fundamental requirement for our understanding of viral disease pathogenesis. T cell epitope mapping strategies increasingly rely on algorithms that predict the binding of peptides to MHC molecules. There is, however, little information on the reliability of predictive algorithms in the context of human populations, in particular, for those expressing HLA class I molecules for which there are limited experimental data available. In this study, we evaluate the ability of NetMHCpan to predict antiviral CD8(+) T cell epitopes that we identified with a traditional approach in patients of Asian ethnicity infected with Dengue virus, hepatitis B virus, or severe acute respiratory syndrome coronavirus. We experimentally demonstrate that the predictive power of algorithms defining peptide-MHC interaction directly correlates with the amount of training data on which the predictive algorithm has been constructed. These results highlight the limited applicability of the NetMHCpan algorithm for populations expressing HLA molecules for which there are little or no experimental binding data, such as those of Asian ethnicity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dengue/immunology , Hepatitis B/immunology , Histocompatibility Antigens Class I/immunology , Severe Acute Respiratory Syndrome/immunology , Algorithms , Coronavirus/immunology , Dengue/virology , Dengue Virus/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A11 Antigen/immunology , HLA-A24 Antigen/immunology , Hepatitis B/virology , Hepatitis B virus/immunology , Humans , Severe Acute Respiratory Syndrome/virology , Singapore
12.
J Virol ; 87(5): 2693-706, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23255803

ABSTRACT

Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4(+) and CD8(+) T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4(+) and 21 are CD8(+) T cell epitopes. We observe that whereas CD8(+) T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4(+) epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4(+) T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4(+) and CD8(+) T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , Epitopes, T-Lymphocyte/immunology , Adult , Capsid Proteins/immunology , Cells, Cultured , Female , Humans , Interferon-gamma/biosynthesis , Interleukins/biosynthesis , Male , Middle Aged , Proteome/immunology , RNA Helicases/immunology , Receptors, CXCR5/biosynthesis , Serine Endopeptidases/immunology , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/immunology
13.
STAR Protoc ; 5(1): 102927, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38431839

ABSTRACT

Cross-linking mass spectrometry (XL-MS) provides low-resolution structural information to model protein structures. Here, we present a protocol to identify cross-links of purified antibody binding to purified human leukocyte antigen (HLA). We describe steps for using a discovery-based XL-MS approach followed by a targeted XL-MS approach. We then detail procedures for using the identified cross-links with other structural data for molecular docking of the antibody to HLA. This protocol has applications for modeling the interacting structure of purified antibody to antigen. For complete details on the use and execution of this protocol, please refer to Ser et al.1.


Subject(s)
Antibodies , Proteins , Humans , Molecular Docking Simulation , Proteins/metabolism , Mass Spectrometry/methods , HLA Antigens
14.
NPJ Vaccines ; 9(1): 43, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396073

ABSTRACT

The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.

15.
Aging Cell ; 23(4): e14099, 2024 04.
Article in English | MEDLINE | ID: mdl-38317404

ABSTRACT

Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.


Subject(s)
COVID-19 , Interferon-gamma , Young Adult , Humans , Aged , Adult , CD4-Positive T-Lymphocytes , COVID-19 Vaccines , BNT162 Vaccine , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
16.
J Lipid Res ; 54(10): 2924-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23797850

ABSTRACT

Tuberculosis is a major cause of mortality and morbidity due to infectious disease. However, current clinical diagnostic methodologies such as PCR, sputum culture, or smear microscopy are not ideal. Antibody-based assays are a suitable alternative but require specific antibodies against a suitable biomarker. Mycolic acid, which has been found in patient sputum samples and comprises a large portion of the mycobacterial cell wall, is an ideal target. However, generating anti-lipid antibodies using traditional hybridoma methodologies is challenging and has limited the exploitation of this lipid as a diagnostic marker. We describe here the isolation and characterization of four anti-mycolic acid antibodies from a nonimmune antibody phage display library that can detect mycolic acids down to a limit of 4.5ng. All antibodies were specific for the methoxy subclass of mycolic acid with weak binding for α mycolic acid and did not show any binding to closely related lipids or other Mycobacterium tuberculosis (Mtb) derived lipids. We also determined the clinical utility of these antibodies based on their limit of detection for mycobacteria colony forming units (CFU). In combination with an optimized alkaline hydrolysis method for rapid lipid extraction, these antibodies can detect 10(5) CFU of Mycobacterium bovis BCG, a close relative of Mtb and therefore represent a novel approach for the development of diagnostic assays for lipid biomarkers.


Subject(s)
Antibodies, Bacterial/chemistry , Mycolic Acids/immunology , Tuberculosis, Pulmonary/diagnosis , Antibodies, Bacterial/biosynthesis , Antibody Specificity , Biomarkers/metabolism , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Limit of Detection , Mycobacterium bovis/metabolism , Mycobacterium smegmatis/metabolism , Mycolic Acids/isolation & purification , Mycolic Acids/metabolism , Protein Binding , Tuberculosis, Pulmonary/metabolism
17.
J Virol ; 86(5): 2817-25, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205730

ABSTRACT

Foxp3(+) CD4(+) regulatory T cells (Tregs) represent a highly suppressive T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, although the role of these cells in acute viral infections is poorly understood. The present study sought to examine the induction of Foxp3(+) CD4(+) Tregs in a nonlethal murine model of pulmonary viral infection by the use of the prototypical respiratory virus influenza A. We establish that influenza A virus infection results in a robust Foxp3(+) CD4(+) T cell response and that regulatory T cell induction at the site of inflammation precedes the effector T cell response. Induced Foxp3(+) CD4(+) T cells are highly suppressive ex vivo, demonstrating that influenza virus-induced Foxp3(+) CD4(+) T cells are phenotypically regulatory. Influenza A virus-induced regulatory T cells proliferate vigorously in response to influenza virus antigen, are disseminated throughout the site of infection and primary and secondary lymphoid organs, and retain Foxp3 expression in vitro, suggesting that acute viral infection is capable of inducing a foreign-antigen-specific Treg response. The ability of influenza virus-induced regulatory T cells to suppress antigen-specific CD4(+) and CD8(+) T cell proliferation and cytokine production correlates closely to their ability to respond to influenza virus antigens, suggesting that virus-induced Tregs are capable of attenuating effector responses in an antigen-dependent manner. Collectively, these data demonstrate that primary acute viral infection is capable of inducing a robust, antigen-responsive, and suppressive regulatory T cell response.


Subject(s)
Antigens, Viral/immunology , Forkhead Transcription Factors/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Female , Forkhead Transcription Factors/genetics , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/virology , Male , Mice , Mice, Inbred C57BL
18.
Hepatology ; 56(6): 2027-38, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22684948

ABSTRACT

UNLABELLED: During antiviral therapy, specific delivery of interferon-α (IFNα) to infected cells may increase its antiviral efficacy, trigger a localized immune reaction, and reduce the side effects caused by systemic administration. Two T-cell receptor-like antibodies (TCR-L) able to selectively bind hepatitis B virus (HBV)-infected hepatocytes of chronic hepatitis B patients and recognize core (HBc18-27) and surface (HBs183-91) HBV epitopes associated with different human leukocyte antigen (HLA)-A*02 alleles (A*02:01, A*02:02, A*02:07, A*02:11) were generated. Each antibody was genetically linked to two IFNα molecules to produce TCR-L/IFNα fusion proteins. We demonstrate that the fusion proteins triggered an IFNα response preferentially on the hepatocytes presenting the correct HBV-peptide HLA-complex and that the mechanism of the targeted IFNα response was dependent on the specific binding of the fusion proteins to the HLA/HBV peptide complexes through the TCR-like variable regions of the antibodies. CONCLUSION: TCR-L antibodies can be used to target cytokines to HBV-infected hepatocytes in vitro. Fusion of IFNα to TCR-L decreased the intrinsic biological activity of IFNα but preserved the overall specificity of the protein for the cognate HBV peptide/HLA complexes. This induction of an effective IFNα response selectively in HBV-infected cells might have a therapeutic advantage in comparison to the currently used native or pegylated IFNα.


Subject(s)
Antibodies, Viral/pharmacology , Antiviral Agents/pharmacology , HLA-A Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B/immunology , Interferon-alpha/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Antibodies, Viral/immunology , Artificial Gene Fusion , CD8-Positive T-Lymphocytes/drug effects , Chemokines/metabolism , Drug Carriers/pharmacology , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B virus/genetics , Humans , Lymphocyte Activation/drug effects , Mice
19.
J Immunol ; 187(9): 4778-87, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21957141

ABSTRACT

Hydrogen sulfide (H(2)S) has been shown to promote transient receptor potential vanilloid type 1 (TRPV1)-mediated neurogenic inflammation in sepsis and its associated multiple organ failure, including acute lung injury (ALI). Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)/PGE(2) pathway plays an important role in augmenting inflammatory immune response in sepsis and respiratory diseases. However, the interactions among H(2)S, COX-2, and PGE(2) in inciting sepsis-evoked ALI remain unknown. Therefore, the aim of this study was to investigate whether H(2)S would upregulate COX-2 and work in conjunction with it to instigate ALI in a murine model of polymicrobial sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in male Swiss mice. dl-propargylglycine, an inhibitor of H(2)S formation, was administrated 1 h before or 1 h after CLP, whereas sodium hydrosulfide, an H(2)S donor, was given during CLP. Mice were treated with TRPV1 antagonist capsazepine 30 min before CLP, followed by assessment of lung COX-2 and PGE(2) metabolite (PGEM) levels. Additionally, septic mice were administrated with parecoxib, a selective COX-2 inhibitor, 20 min post-CLP and subjected to ALI and survival analysis. H(2)S augmented COX-2 and PGEM production in sepsis-evoked ALI by a TRPV1 channel-dependent mechanism. COX-2 inhibition with parecoxib attenuated H(2)S-augmented lung PGEM production, neutrophil infiltration, edema, proinflammatory cytokines, chemokines, and adhesion molecules levels, restored lung histoarchitecture, and protected against CLP-induced lethality. The strong anti-inflammatory and antiseptic actions of selective COX-2 inhibitor may provide a potential therapeutic approach for the management of sepsis and sepsis-associated ALI.


Subject(s)
Acute Lung Injury/metabolism , Cyclooxygenase 2/biosynthesis , Dinoprostone/biosynthesis , Hydrogen Sulfide/pharmacology , Lung/pathology , Sepsis/metabolism , TRPV Cation Channels/biosynthesis , Up-Regulation/immunology , Acute Lung Injury/chemically induced , Acute Lung Injury/enzymology , Animals , Cecum , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/physiology , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Ligation , Lung/enzymology , Lung/metabolism , Male , Mice , Punctures , Sepsis/complications , Sepsis/enzymology , TRPV Cation Channels/metabolism , Up-Regulation/drug effects
20.
J Immunol ; 187(11): 6011-21, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22043017

ABSTRACT

The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae Infections/immunology , Animals , Antigens, CD/immunology , Antigens, Viral/immunology , Cell Separation , Dendritic Cells/virology , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Integrin alpha Chains/immunology , Lung/immunology , Lymph Nodes/virology , Mice , Mice, Inbred C57BL , Orthomyxoviridae/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL