Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 166(3): 582-595, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27426947

ABSTRACT

APS1/APECED patients are defined by defects in the autoimmune regulator (AIRE) that mediates central T cell tolerance to many self-antigens. AIRE deficiency also affects B cell tolerance, but this is incompletely understood. Here we show that most APS1/APECED patients displayed B cell autoreactivity toward unique sets of approximately 100 self-proteins. Thereby, autoantibodies from 81 patients collectively detected many thousands of human proteins. The loss of B cell tolerance seemingly occurred during antibody affinity maturation, an obligatorily T cell-dependent step. Consistent with this, many APS1/APECED patients harbored extremely high-affinity, neutralizing autoantibodies, particularly against specific cytokines. Such antibodies were biologically active in vitro and in vivo, and those neutralizing type I interferons (IFNs) showed a striking inverse correlation with type I diabetes, not shown by other anti-cytokine antibodies. Thus, naturally occurring human autoantibodies may actively limit disease and be of therapeutic utility.


Subject(s)
Antibody Affinity , Autoantibodies/immunology , Disease Resistance/immunology , Polyendocrinopathies, Autoimmune/immunology , Transcription Factors/deficiency , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Child , Child, Preschool , Cytokines/immunology , Diabetes Mellitus, Type 1/immunology , Humans , Immune Tolerance , Mice, Inbred C57BL , Middle Aged , T-Lymphocytes/immunology , Young Adult , AIRE Protein
2.
BJU Int ; 123(5): 826-833, 2019 05.
Article in English | MEDLINE | ID: mdl-30216634

ABSTRACT

OBJECTIVES: To investigate and further validate if two novel cancer-related glycoproteins, discovered by a genetic-guided proteomics approach, can distinguish benign disease from prostate cancer (PCa) in men with enlarged prostates. PATIENTS AND METHODS: A retrospective study was performed that included men with a total prostate-specific antigen (PSA) concentration of 2.0-10 ng/mL, negative digital rectal examination and enlarged prostate (volume ≥35 mL). Serum samples were collected between 2011 and 2016 at a single centre from 474 men before they underwent prostate biopsy. Serum concentrations of thrombospondin 1 (THBS1) and cathepsin D (CTSD) glycoproteins were combined with the percentage of free PSA to total PSA ratio (%fPSA) to predict any or significant cancer at biopsy. RESULTS: The multivariable logistic regression model including THBS1, CTSD and %fPSA discriminated among biopsy-positive and biopsy-negative patients in the validation set with an area under the curve (AUC) of 0.86 (P < 0.001, 95% confidence interval (CI) 0.82-0.91), while %fPSA alone showed an AUC of 0.64 (P < 0.001, 95% CI 0.57-0.71). At 90% sensitivity for PCa, the specificity of the model was 62%, while %fPSA had a specificity of 23%. For high grade (Gleason score ≥ 7 in prostatectomy specimen) PCa, the specificity was 48% at 90% sensitivity, with an AUC of 0.83, (P < 0.001, 95% CI 0.77 to 0.88). Limitations of the study include the retrospective set-up and single-centre cohort. CONCLUSIONS: A model combining two cancer-related glycoproteins (THBS1 and CTSD) and %fPSA can improve PCa diagnosis and may reduce the number of unnecessary prostate biopsies because of its improved specificity for PCa when compared to %fPSA alone.


Subject(s)
Biopsy , Cathepsin D/blood , Early Detection of Cancer , Prostate-Specific Antigen/blood , Prostate/pathology , Prostatic Neoplasms/blood , Thrombospondin 1/blood , Unnecessary Procedures , Aged , Aged, 80 and over , Area Under Curve , Early Detection of Cancer/methods , Humans , Logistic Models , Male , Middle Aged , Predictive Value of Tests , Prostatic Neoplasms/pathology , Retrospective Studies
3.
J Exp Med ; 203(6): 1481-92, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-16717116

ABSTRACT

Toll-like receptors (TLRs) function as primary sensors that elicit coordinated innate immune defenses through recognition of microbial products and induction of immune and proinflammatory genes. Here we report the identification and biological characterization of a lipopolysaccharide (LPS)-like molecule extracted from the cyanobacterium Oscillatoria Planktothrix FP1 (cyanobacterial product [CyP]) that is not stimulatory per se but acts as a potent and selective antagonist of bacterial LPS. CyP binds to MD-2 and efficiently competes with LPS for binding to the TLR4-MD-2 receptor complex. The addition of CyP together with LPS completely inhibited both MyD88- and TRIF-dependent pathways and suppressed the whole LPS-induced gene transcription program in human dendritic cells (DCs). CyP protected mice from endotoxin shock in spite of a lower capacity to inhibit LPS stimulation of mouse DCs. Interestingly, the delayed addition of CyP to DCs responding to LPS strongly inhibited signaling and cytokine production by immediate down-regulation of inflammatory cytokine mRNAs while not affecting other aspects of DC maturation, such as expression of major histocompatibility complex molecules, costimulatory molecules, and CCR7. Collectively, these results indicate that CyP is a potent competitive inhibitor of LPS in vitro and in vivo and reveal the requirement of sustained TLR4 stimulation for induction of cytokine genes in human DCs.


Subject(s)
Cyanobacteria/immunology , Cytokines/genetics , Dendritic Cells/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Shock, Septic/prevention & control , Toll-Like Receptor 4/immunology , Animals , Dendritic Cells/drug effects , Humans , Mice , Transcription, Genetic/drug effects
4.
J Virol ; 84(2): 1005-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19889756

ABSTRACT

Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC(90)] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Cytomegalovirus/immunology , Epitopes , Membrane Glycoproteins , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Cell Line , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Molecular Sequence Data , Neutralization Tests , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
5.
PLoS One ; 15(5): e0233442, 2020.
Article in English | MEDLINE | ID: mdl-32421745

ABSTRACT

The Prostate Specific Antigen (PSA) test suffers from low specificity for the diagnosis of Prostate Cancer (PCa). We originally discovered two cancer-related proteins thrombospondin-1 (THBS1) and cathepsin D (CTSD) using a mass-spectrometry-based proteomics approach. The two serum proteins were shown to improve the diagnosis of high-grade PCa. Thus, we developed quantitative ELISAs for the determination of their concentration in human serum. Here we report their analytical performance in terms of limit of detection, specificity, precision, linearity and interferences, which were determined based on CLSI guidelines. Further, we investigated the influence of pre-analytical factors on concentration measurements. For this, blood from 4-6 donors was collected in different tubes and stored at room temperature for different times prior to centrifugation at different centrifugal forces and temperatures. Stability of THBS1 and CTSD under different storage temperatures was also evaluated. Our results show that the assays are specific, linear and sensitive enough to allow measurement of clinical samples. Precision in terms of repeatability and total within-laboratory coefficient of variation (CV) are 5.5% and 8.1% for THBS1 and 4.3% and 7.2% for CTSD, respectively. Relative laboratory-to-laboratory differences were -6.3% for THBS1 and -3% for CTSD. Both THBS1 and CTSD were stable in serum samples, with 80-120% recoveries of concentrations across donors, sample preparation and storage. In conclusion, the ELISAs as part of the novel commercial in vitro diagnostic test Proclarix are suitable for the use in clinical practice. THBS1 and CTSD can be accurately measured for their intended use independent of the lot and laboratory when conditions consistent with routine practice for PSA sampling and storage are used.


Subject(s)
Cathepsin D/blood , Prostatic Neoplasms/diagnosis , Thrombospondin 1/blood , Blood Specimen Collection/methods , Enzyme-Linked Immunosorbent Assay , Humans , Male , Observer Variation , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Protein Stability , Proteomics/methods , Reproducibility of Results
6.
Mol Immunol ; 45(13): 3553-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18571239

ABSTRACT

Toll-like receptors are essential pattern-recognition receptors of the innate immune system. They recognize a range of conserved molecules of invading microorganisms. The innate immune system is developed to protect the host, but can be deleterious if activated uncontrolled or inappropriate, such as in sepsis with Gram-negative bacteria. New approaches for treatment, like inhibition of innate immune responses, may be beneficial for the outcome of such conditions. Toll-like receptor 4 associated with CD14 and MD-2, is the lipopolysaccharide (LPS)-receptor and one of the candidates for such intervention. We investigated the newly described cyanobacterial LPS analogue CyP as a potential inhibitor of Escherichia coli (E. coli) LPS-induced inflammatory response in porcine whole blood. Pro-inflammatory cytokines and soluble terminal complement complex, sC5b-9, were used as read-outs. CyP, in contrast to E. coli LPS, did not induce cytokine production using doses up to 1mug/mL whole blood, indicating a lack of agonistic effect of CyP. In contrast, CyP was an efficient LPS antagonist, dose-dependently and completely inhibiting E. coli LPS-induced TNF-alpha, IL-1beta and IL-8 production. CyP was a modest activator of porcine complement compared to LPS from other Gram-negative bacteria. When CyP was pre-incubated in porcine whole blood before adding whole E. coli bacteria, a modest, variable and non-significant inhibition of cytokines were seen, reaching an average inhibition of 44% for IL-1beta. We have demonstrated for the first time that the cyanobacterial LPS analogue, CyP, is an efficient inhibitor of E. coli LPS-induced cytokines in whole blood and may be a candidate for therapeutic LPS-inhibition.


Subject(s)
Cyanobacteria/chemistry , Cytokines/biosynthesis , Escherichia coli Infections/drug therapy , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/therapeutic use , Sus scrofa/immunology , Animals , Blood Cells/drug effects , Complement Membrane Attack Complex/analysis , Complement Membrane Attack Complex/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Escherichia coli/chemistry , Escherichia coli/immunology , Escherichia coli Infections/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/isolation & purification , Sus scrofa/blood , Sus scrofa/metabolism
7.
Infect Immun ; 76(7): 3156-63, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18443097

ABSTRACT

Septicemia caused by Neisseria meningitidis is characterized by increasing levels of meningococcal lipopolysaccharide (Nm-LPS) and cytokine production in the blood. We have used an in vitro human whole-blood model of meningococcal septicemia to investigate the potential of CyP, a selective Toll-like receptor 4 (TLR4)-MD-2 antagonist derived from the cyanobacterium Oscillatoria planktothrix FP1, for reducing LPS-mediated cytokine production. CyP (> or = 1 microg/ml) inhibited the secretion of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6 (by >90%) and chemokines IL-8 and monocyte chemoattractant protein 1 (by approximately 50%) induced by the treatment of blood with pure Nm-LPS, by isolated outer membranes, and after infection with live meningococci of different serogroups. In vitro studies with human dendritic cells and TLR4-transfected Jurkat cells demonstrated that CyP competitively inhibited Nm-LPS interactions with TLR4 and subsequent NF-kappaB activation. These data demonstrate that CyP is a potent antagonist of meningococcal LPS and could be considered a new adjunctive therapy for treating septicemia.


Subject(s)
Bacteremia/immunology , Cyanobacteria/immunology , Cytokines/antagonists & inhibitors , Lipopolysaccharides/antagonists & inhibitors , Neisseria meningitidis/pathogenicity , Toll-Like Receptor 4/antagonists & inhibitors , Bacteremia/microbiology , Cytokines/biosynthesis , Dendritic Cells , Humans , Jurkat Cells , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/genetics , Transfection
8.
Science ; 333(6044): 850-6, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21798894

ABSTRACT

The isolation of broadly neutralizing antibodies against influenza A viruses has been a long-sought goal for therapeutic approaches and vaccine design. Using a single-cell culture method for screening large numbers of human plasma cells, we isolated a neutralizing monoclonal antibody that recognized the hemagglutinin (HA) glycoprotein of all 16 subtypes and neutralized both group 1 and group 2 influenza A viruses. Passive transfer of this antibody conferred protection to mice and ferrets. Complexes with HAs from the group 1 H1 and the group 2 H3 subtypes analyzed by x-ray crystallography showed that the antibody bound to a conserved epitope in the F subdomain. This antibody may be used for passive protection and to inform vaccine design because of its broad specificity and neutralization potency.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Specificity , Cells, Cultured , Cross Reactions , Crystallography, X-Ray , Epitopes/immunology , Ferrets , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Immunization, Passive , Immunoglobulin Variable Region/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Mice , Models, Molecular , Molecular Sequence Data , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/therapy , Plasma Cells/immunology , Protein Multimerization , Protein Structure, Secondary
9.
J Mol Biol ; 396(5): 1491-507, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20053355

ABSTRACT

If we understand the structural rules governing antibody (Ab)-antigen (Ag) interactions in a given virus, then we have the molecular basis to attempt to design and synthesize new epitopes to be used as vaccines or optimize the antibodies themselves for passive immunization. Comparing the binding of several different antibodies to related Ags should also further our understanding of general principles of recognition. To obtain and compare the three-dimensional structure of a large number of different complexes, however, we need a faster method than traditional experimental techniques. While biocomputational docking is fast, its results might not be accurate. Combining experimental validation with computational prediction may be a solution. As a proof of concept, here we isolated a monoclonal Ab from the blood of a human donor recovered from dengue virus infection, characterized its immunological properties, and identified its epitope on domain III of dengue virus E protein through simple and rapid NMR chemical shift mapping experiments. We then obtained the three-dimensional structure of the Ab/Ag complex by computational docking, using the NMR data to drive and validate the results. In an attempt to represent the multiple conformations available to flexible Ab loops, we docked several different starting models and present the result as an ensemble of models equally agreeing with the experimental data. The Ab was shown to bind a region accessible only in part on the viral surface, explaining why it cannot effectively neutralize the virus.


Subject(s)
Antigen-Antibody Complex/chemistry , Amino Acid Sequence , Antibodies, Viral/chemistry , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Binding Sites , Crystallography, X-Ray , Dengue Virus/genetics , Dengue Virus/immunology , Epitopes/chemistry , Epitopes/genetics , Humans , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
10.
Cell Host Microbe ; 8(3): 271-83, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20833378

ABSTRACT

Antibodies protect against homologous Dengue virus (DENV) infection but can precipitate severe dengue by promoting heterotypic virus entry via Fcγ receptors (FcγR). We immortalized memory B cells from individuals after primary or secondary infection and analyzed anti-DENV monoclonal antibodies (mAbs) thus generated. MAbs to envelope (E) protein domain III (DIII) were either serotype specific or cross-reactive and potently neutralized DENV infection. DI/DII- or viral membrane protein prM-reactive mAbs neutralized poorly and showed broad cross-reactivity with the four DENV serotypes. All mAbs enhanced infection at subneutralizing concentrations. Three mAbs targeting distinct epitopes on the four DENV serotypes and engineered to prevent FcγR binding did not enhance infection and neutralized DENV in vitro and in vivo as postexposure therapy in a mouse model of lethal DENV infection. Our findings reveal an unexpected degree of cross-reactivity in human antibodies against DENV and illustrate the potential for an antibody-based therapy to control severe dengue.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Dengue Virus/immunology , Dengue/immunology , Viral Envelope Proteins/immunology , Animals , B-Lymphocytes/immunology , Blotting, Western , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Mice , Neutralization Tests , Receptors, IgG/immunology , Serotyping , Viral Nonstructural Proteins
11.
Trends Immunol ; 28(5): 227-33, 2007 May.
Article in English | MEDLINE | ID: mdl-17403614

ABSTRACT

The activation of resting dendritic cells (DCs) is a crucial step in the initiation of adaptive immunity because it links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. It is well recognized that a wide variety of microbial products and endogenous signals can trigger DC activation, and that different DC subsets are specialized in inducing different classes of immune responses. In this review, we will focus on how different aspects of DC maturation are regulated not only by the nature of the DC maturation stimuli, but also by their duration, combination and timing, and provide an overview of how different modes of DC activation can affect T cell responses.


Subject(s)
Dendritic Cells , Models, Biological , Signal Transduction , Animals , Antigen Presentation , Cell Differentiation , Dendritic Cells/cytology , Dendritic Cells/immunology , Humans , Lymphocyte Activation , T-Lymphocytes/immunology , Time Factors , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL