Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833939

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids within hepatocytes, which compromises liver functionality following mitochondrial dysfunction and increased production of reactive oxygen species (ROS). Lipoic acid is one of the prosthetic groups of the pyruvate dehydrogenase complex also known for its ability to confer protection from oxidative damage because of its antioxidant properties. In this study, we aimed to investigate the effects of lipoic acid on lipotoxicity and mitochondrial dynamics in an in vitro model of liver steatosis. HepG2 cells were treated with palmitic acid and oleic acid (1:2) to induce steatosis, without and with 1 and 5 µM lipoic acid. Following treatments, cell proliferation and lipid droplets accumulation were evaluated. Mitochondrial functions were assessed through the evaluation of membrane potential, MitoTracker Red staining, expression of genes of the mitochondrial quality control, and analysis of energy metabolism by HPLC and Seahorse. We showed that lipoic acid treatment restored membrane potential to values comparable to control cells, as well as protected cells from mitochondrial fragmentation following PA:OA treatment. Furthermore, our data showed that lipoic acid was able to determine an increase in the expression of mitochondrial fusion genes and a decrease in mitochondrial fission genes, as well as to restore the bioenergetics of cells after treatment with palmitic acid and oleic acid. In conclusion, our data suggest that lipoic acid reduces lipotoxicity and improves mitochondrial functions in an in vitro model of steatosis, thus providing a potentially valuable pharmacological tool for NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thioctic Acid , Humans , Thioctic Acid/pharmacology , Thioctic Acid/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Mitochondria/metabolism , Hepatocytes/metabolism , Oxidative Stress , Energy Metabolism , Liver/metabolism
2.
Mol Biol Rep ; 47(4): 2941-2949, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32219772

ABSTRACT

TBI is the main cause of death and disability in individuals aged 1-45 in Western countries. One of the main challenges of TBI at present is the lack of specific diagnostic biomarkers, especially for mild TBI (mTBI), which remains currently difficult to value in clinical practice. In this context MiRNAs may be important mediators of the profound molecular and cellular changes that occur after TBI in both the short and the long term. Recently, plasma miRNAs profiling in human TBI, have revealed dynamic temporal regulation of miRNA expression within the cortex. Aim of this study was to select a specific miRNAs panel for mTBI, by focusing the research on the prognostic meaning of miRNAs in the hours following the trauma, in order to be able to use this MIRNAs as potential biomarkers useful for monitoring the follow up of mild TBI. Serum levels of 17 miRNAs were measured by RT-quantitative polymerase chain reaction (qPCR) in 20 patients with mTBI at three different time-points (0 h, 24 h, 48 h) and in 10 controls. For 15 miRNAs we found a significant differences in the comparison among the three time points: for each of these miRNAs the values were greater at baseline and progressively reduced at 24 h and 48 h. These data allow us to consider the miRNAs included in panel as sensitive and specific biomarkers for mTBI, useful in monitoring the post-trauma period.


Subject(s)
Biomarkers/blood , Brain Concussion/genetics , Circulating MicroRNA/genetics , Adult , Brain Concussion/blood , Brain Concussion/physiopathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/physiopathology , Circulating MicroRNA/blood , Female , Gene Expression Profiling/methods , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Prognosis , Prospective Studies , ROC Curve , Transcriptome/genetics
3.
Int J Mol Sci ; 20(12)2019 Jun 23.
Article in English | MEDLINE | ID: mdl-31234562

ABSTRACT

The evidence from post-mortem biochemical studies conducted on cortisol and catecholamines suggest that analysis of the adrenal gland could provide useful information about its role in human pathophysiology and the stress response. Authors designed an immunohistochemical study on the expression of the adrenal ß2-adrenergic receptor (ß2-AR), a receptor with high-affinity for catecholamines, with the aim to show which zones it is expressed in and how its expression differs in relation to the cause of death. The immunohistochemical study was performed on adrenal glands obtained from 48 forensic autopsies of subjects that died as a result of different pathogenic mechanisms using a mouse monoclonal ß2-AR antibody. The results show that immunoreactivity for ß2-AR was observed in all adrenal zones. Furthermore, immunoreactivity for ß2-AR has shown variation in the localization and intensity of different patterns in relation to the original cause of death. To the best of our knowledge, this is the first study that demonstrates ß2-AR expression in the human cortex and provides suggestions on the possible involvement of ß2-AR in human cortex hormonal stimulation. In conclusion, the authors provide a possible explanation for the observed differences in expression in relation to the cause of death.


Subject(s)
Adrenal Glands/metabolism , Gene Expression , Receptors, Adrenergic, beta-2/metabolism , Adolescent , Adrenal Glands/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Female , Humans , Immunohistochemistry , Male , Middle Aged , Receptors, Adrenergic, beta-2/genetics , Young Adult
4.
Int Urol Nephrol ; 54(9): 2355-2364, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35147839

ABSTRACT

PURPOSE: Indole-3-acetic acid is a protein-bound indolic uremic toxin deriving from tryptophan metabolism. Increased levels are associated with higher thrombotic risk and both cardiovascular and all-cause mortality. An emerging biomarker of cardiovascular disease is the monocyte-to-high-density lipoprotein ratio (MHR). The main purpose of this study was to investigate the association of indole-3-acetic acid with MHR and other markers of cardiovascular risk in patients with chronic kidney disease (CKD). METHODS: We enrolled 61 non-dialysis CKD patients and 6 dialysis patients. Indole-3-acetic acid levels were measured with ELISA technique. RESULTS: In the whole cohort of 67 patients, indole-3-acetic acid was directly related to Ca × P (ρ = 0.256; P = 0.0365) and MHR (ρ = 0.321; P = 0.0082). In the 40 patients with previous cardiovascular events, indole-3-acetic acid correlated with uric acid (r = 0.3952; P = 0.0116) and MHR (ρ = 0.380; P = 0.0157). MHR was related with fibrinogen (ρ = 0.426; P = 0.0010), arterial hypertension (ρ = 0.274; P = 0.0251), C-reactive protein (ρ = 0.332; P = 0.0061), gender (ρ = - 0.375; P = 0.0017; 0 = male, 1 = female), and CKD stage (ρ = 0.260; P = 0.0337). A multiple regression analysis suggested that indole-3-acetic acid might be an independent predictor of MHR. CONCLUSION: This study shows a significant association between indole-3-acetic acid and MHR. Prospective studies are required to evaluate if decreasing indole-3-acetic acid concentrations may reduce MHR levels and cardiovascular events and improve clinical outcomes.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Biomarkers/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cholesterol, HDL , Female , Humans , Indoleacetic Acids , Lipoproteins, HDL , Male , Monocytes , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism
5.
Int Urol Nephrol ; 52(6): 1125-1133, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32314169

ABSTRACT

Kynurenine pathway of tryptophan metabolism is involved in the pathophysiology of chronic kidney disease (CKD) and diabetes mellitus, mainly through the inflammation-induced activity of indoleamine 2,3-dioxygenase (IDO), and few studies have investigated its potential link with proteinuria. Renin-angiotensin system inhibitors (RASis) are recommended in these patients to decrease proteinuria, slow CKD progression and reduce cardiovascular risk, but whether these drugs influence kynurenine levels in humans is unknown. We evaluated serum tryptophan and kynurenine in patients suffering from CKD with or without type 2 diabetes mellitus, their correlations with markers of reduced kidney function, and their relationship with RAS-inhibiting therapy. Of 72 adult patients enrolled, 55 were receiving RASis, whereas 17 were not. Tryptophan was assessed by HPLC (high-performance liquid chromatography); kynurenine was measured using an enzyme-linked immunosorbent assay kit; IDO activity (%) was calculated with the formula (kynurenine/tryptophan) × 100. Kynurenine levels were significantly lower in the group under RASis compared to the untreated group (1.56 ± 0.79 vs 2.16 ± 1.51 µmol/l; P = 0.0378). In patients not receiving RASis, kynurenine was inversely related to estimated glomerular filtration rate (eGFR) (r = - 0.4862; P = 0.0478) and directly related to both proteinuria (ρ = 0.493; P = 0.0444) and albuminuria (ρ = 0.542; P = 0.0247). IDO activity was higher in patients with history of cardiovascular disease compared to patients with no such history, and it negatively correlated with eGFR (ρ = - 0.554; P = 0.0210) in the same group. These findings may contribute to explain the well-known beneficial effects of RAS inhibition in CKD population, especially considering that kynurenine is emerging as a potential new biomarker of CKD.


Subject(s)
Angiotensins/antagonists & inhibitors , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/blood , Diabetic Nephropathies/drug therapy , Kynurenine/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/drug therapy , Renin/antagonists & inhibitors , Tryptophan/blood , Aged , Aged, 80 and over , Correlation of Data , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Female , Humans , Male , Renal Insufficiency, Chronic/complications
6.
Cancer Treat Res Commun ; 24: 100203, 2020.
Article in English | MEDLINE | ID: mdl-32777750

ABSTRACT

Gliomas represent over 70% of all brain tumors, they are highly invasive and structurally vascular neoplasms. Despite the latest technological advance in neuro-surgery the survival of patients with high-grade glioma remains poor. The lack of robust treatment options has propelled the search for new markers that may able allow the identification of patients who can benefit from molecularly targeted therapies. The Hippo signaling pathway is considered as a key regulator of tissue homeostasis, cell proliferation and apoptosis, and alterations of this pathway seem to contribute to tumorigenesis. Yes-associated protein (YAP1) is a downstream target of the Hippo pathway which acts as a transcription co-activator. In cancer, YAP1 has been reported to function either as an oncogene or tumor suppressor, depending on the cell context. The aim of this study was to examine the expression of YAP1, Survivin and LATS1 kinase activity in human astroglial tumors with different grades of malignancy. Moreover, we also investigated the expression of miR-221 and miR-10b and their relationship with core molecules of the Hippo pathway. Our results showed the overexpression of YAP1 and Survivin as well as a decreased activity of large tumor suppressor 1 (LATS1) in high-grade glioblastoma versus anaplastic astrocytoma and low-grade glioma. Furthermore, we also demonstrated that miR-221 and miR-10b are specifically involved in Hippo signaling via LATS1 regulation and that their knockdown significantly decreased glioma cell proliferation. This preliminary data confirmed the crucial role of the Hippo pathway in cancer and suggested that miR-221 and miR-10b could be potential therapeutic targets for glioma treatment.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Astrocytes/pathology , Astrocytoma/diagnosis , Astrocytoma/pathology , Astrocytoma/surgery , Brain/cytology , Brain/pathology , Brain/surgery , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/diagnosis , Glioblastoma/pathology , Glioblastoma/surgery , Hippo Signaling Pathway , Humans , Male , Middle Aged , Neoplasm Grading , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Survivin/genetics , Survivin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins
7.
Food Chem Toxicol ; 132: 110675, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31306689

ABSTRACT

Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.


Subject(s)
Cadmium Chloride/toxicity , Dietary Supplements , Inositol/pharmacology , Kidney/drug effects , Animals , Antioxidants/administration & dosage , Blood Urea Nitrogen , Creatinine/blood , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Neuromuscul Disord ; 12(3): 286-91, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11801401

ABSTRACT

Sensory loss and ulcero-mutilating features have been observed in hereditary sensory neuropathy type I and in hereditary motor and sensory neuropathy type IIB, also referred as Charcot-Marie-Tooth disease type 2B. To date two loci associated with ulcero-mutilating neuropathy have been described: CMT2B at 3q13-q22 and HSN I at 9q22.1-q22.3. We performed linkage analysis with chromosomal markers representing the hereditary sensory neuropathy type I and Charcot-Marie-Tooth disease type 2B loci on an Italian family with a severe distal sensory loss leading to an ulcero-mutilating peripheral neuropathy. Negative likelihood-of-odds scores excluded any evidence of linkage to both chromosome 3q13 and chromosome 9q22 markers, confirming the genetic heterogeneity of this clinical entity and the presence of a third locus responsible for ulcero-mutilating neuropathies.


Subject(s)
Sensation Disorders/genetics , Skin Ulcer/genetics , Adolescent , Adult , Aged , Charcot-Marie-Tooth Disease/genetics , Child , Child, Preschool , DNA Mutational Analysis , Female , Genes, Dominant , Genetic Linkage , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Italy , Male , Pedigree
9.
Ital J Biochem ; 52(2): 72-9, 2003 Jun.
Article in English | MEDLINE | ID: mdl-14677423

ABSTRACT

Down syndrome is the most common autosomal aberration among liveborns, characterised by several clinical features and metabolic disturbances. Aminoacid pathways abnormalities and defective oxidative balance are the most common metabolic problems in Down Syndrome. To evaluate the biochemical responses of children with Down Syndrome to a nutritional regimen supplemented with aminoacids, vitamins and polyunsaturated fatty acids, we submitted 86 subjects divided in two groups (0-6 and 6-12 years) to the dosage of plasma levels of aminoacids, antioxidant enzymes activities and reactive oxygen species, before and after 12 months of such nutritional supplementation and in relation to normal controls. The results obtained showed a tendency towards the values of normal subjects with statistically significant differences. Although other studies must be performed to confirm and define such report, our experience supports the usefulness of a nutritional supplementation with aminoacids, vitamins and polyunsaturated fatty acids, also considering the absence of side effects.


Subject(s)
Amino Acids/metabolism , Oxygen/metabolism , Age Factors , Amino Acids/pharmacology , Antioxidants/metabolism , Child , Child, Preschool , Dietary Supplements , Down Syndrome/blood , Fatty Acids, Unsaturated/metabolism , Female , Humans , Infant , Infant, Newborn , Male , Reactive Oxygen Species , Time Factors , Uric Acid/blood , Vitamins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL