Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Pathol ; 240(2): 161-72, 2016 10.
Article in English | MEDLINE | ID: mdl-27357447

ABSTRACT

Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma/genetics , Lung Neoplasms/genetics , MicroRNAs/metabolism , NFI Transcription Factors/genetics , Neoplasm Invasiveness/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , MicroRNAs/genetics , Middle Aged , NFI Transcription Factors/metabolism , Neoplasm Invasiveness/pathology , Prognosis , Survival Rate
2.
Biomed Eng Online ; 14: 96, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26499452

ABSTRACT

BACKGROUND: Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. METHODS: We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. RESULTS: The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 µm below the epithelial surface were respectively 100, 100, and 92 %. CONCLUSIONS: Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Adult , Colposcopy , Female , Humans , Middle Aged , Neoplasm Grading , Phenotype , Uterine Cervical Neoplasms/pathology , Young Adult , Uterine Cervical Dysplasia/pathology
3.
Am J Respir Cell Mol Biol ; 50(5): 912-22, 2014 May.
Article in English | MEDLINE | ID: mdl-24298892

ABSTRACT

DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.


Subject(s)
DNA Methylation , Pulmonary Disease, Chronic Obstructive/genetics , Aged , Bronchi/metabolism , DNA/genetics , Epithelium/metabolism , Female , Gene Expression , Humans , Male , Middle Aged , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , RNA/genetics , Smoking/genetics , Smoking/metabolism
4.
BMC Cancer ; 14: 778, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25342220

ABSTRACT

BACKGROUND: Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. METHODS: We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. RESULTS: We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. CONCLUSIONS: We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.


Subject(s)
Adenocarcinoma/etiology , Adenocarcinoma/mortality , Lung Neoplasms/etiology , Lung Neoplasms/mortality , MicroRNAs/genetics , Smoking , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , Cluster Analysis , Cohort Studies , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Patient Outcome Assessment , Prognosis , RNA Interference
5.
Front Immunol ; 14: 1275890, 2023.
Article in English | MEDLINE | ID: mdl-37936700

ABSTRACT

The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment.​.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Diagnostic Imaging , CD8-Positive T-Lymphocytes , Image Processing, Computer-Assisted
6.
Int J Gynecol Cancer ; 22(9): 1557-63, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23095774

ABSTRACT

OBJECTIVE: Long noncoding RNAs (lncRNAs) are a unique class of messenger RNA-like transcripts of at least 200 nucleotides in length with no significant protein-coding capacity. Aberrant lncRNA expression is emerging as a major component of the cancer transcriptome. Here, we sought to determine if differential lncRNA expression is a feature of the human cervical intraepithelial neoplasia (CIN) transcriptome. METHODS: Sequence data were derived from 16 long serial analyses of gene expression (L-SAGE) libraries constructed from cervical specimens representing mild (CIN1), moderate (CIN2), and severe (CIN3) histopathologic grades of CIN. A novel lncRNA discovery pipeline was developed to query the expression of lncRNAs within the SAGE data sets. RESULTS: A total of 2,230,370 sequence tags were delineated from the 16 SAGE libraries, representing the expression of 367,482 unique tags at varying abundance. Using a novel stepwise filtering strategy, we analyzed the cervical SAGE libraries and identified the expression profiles of 1056 lncRNAs in the human cervix. We present the first lncRNA expression profile derived from nonneoplastic cervical tissue and establish that changes in lncRNA expression do occur in cervical intraepithelial lesions. Our analysis also shows statistically significant aberrant expression of lncRNAs in the 3 CIN grades, suggesting that these unique noncoding RNA transcripts may contribute to the development and progression of precursor lesions. CONCLUSIONS: Through the analysis of L-SAGE libraries constructed from cervical specimens, we provide the first lncRNA expression profile of the cervix and demonstrate aberrant expression in early-stage neoplasia.


Subject(s)
RNA, Long Noncoding/genetics , Uterine Cervical Dysplasia/genetics , Uterine Cervical Neoplasms/genetics , Adult , Algorithms , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Humans , Microarray Analysis , Middle Aged , Young Adult
7.
Cancer Metastasis Rev ; 29(1): 73-93, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20108112

ABSTRACT

Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.


Subject(s)
Epigenesis, Genetic/physiology , Genomics/methods , Neoplasms/genetics , Systems Integration , Animals , Epigenesis, Genetic/genetics , Gene Expression Profiling/methods , Genomics/trends , High-Throughput Screening Assays/methods , Humans , Models, Biological , Oligonucleotide Array Sequence Analysis/methods , Signal Transduction/genetics
8.
BMC Cancer ; 11: 462, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-22026481

ABSTRACT

BACKGROUND: Oral cancer is a major health problem worldwide. The 5-year survival rate ranges from 30-60%, and has remained unchanged in the past few decades. This is mainly due to late diagnosis and high recurrence of the disease. Of the patients who receive treatment, up to one third suffer from a recurrence or a second primary tumor. It is apparent that one major cause of disease recurrence is clinically unrecognized field changes which extend beyond the visible tumor boundary. We have previously developed an approach using fluorescence visualization (FV) technology to improve the recognition of the field at risk surrounding a visible oral cancer that needs to be removed and preliminary results have shown a significant reduction in recurrence rates. METHOD/DESIGN: This paper describes the study design of a randomized, multi-centre, double blind, controlled surgical trial, the COOLS trial. Nine institutions across Canada will recruit a total of 400 patients with oral severe dysplasia or carcinoma in situ (N = 160) and invasive squamous cell carcinoma (N = 240). Patients will be stratified by participating institution and histology grade and randomized equally into FV-guided surgery (experimental arm) or white light-guided surgery (control arm). The primary endpoint is a composite of recurrence at or 1 cm within the previous surgery site with 1) the same or higher grade histology compared to the initial diagnosis (i.e., the diagnosis used for randomization); or 2) further treatment due to the presence of severe dysplasia or higher degree of change at follow-up. This is the first randomized, multi-centre trial to validate the effectiveness of the FV-guided surgery. DISCUSSION: In this paper we described the strategies, novelty, and challenges of this unique trial involving a surgical approach guided by the FV technology. The success of the trial requires training, coordination, and quality assurance across multiple sites within Canada. The COOLS trial, an example of translational research, may result in reduced recurrence rates following surgical treatment of early-stage oral cancer with significant impacts on survival, morbidity, patients' quality of life and the cost to the health care system. TRIAL REGISTRATION: Clinicaltrials.gov NCT01039298.


Subject(s)
Carcinoma in Situ/surgery , Carcinoma, Squamous Cell/surgery , Fluorescence , Head and Neck Neoplasms/surgery , Mouth Neoplasms/surgery , Surgery, Computer-Assisted/methods , Canada , Cost-Benefit Analysis , Double-Blind Method , Humans , Neoplasm Recurrence, Local , Quality-Adjusted Life Years , Squamous Cell Carcinoma of Head and Neck , Surgery, Computer-Assisted/economics
9.
Biomed Opt Express ; 11(2): 624-635, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32133217

ABSTRACT

A multimodal multiphoton microscopy (MPM) is developed to acquire both two-photon microscopy (2PM) and three-photon microscopy (3PM) signals. A dual-wavelength Er-doped fiber laser is used as the light source, which provides the fundamental pulse at 1580 nm to excite third harmonic generation (THG) and the frequency-doubled pulse at 790 nm to excite intrinsic two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). Due to their different contrast mechanisms, the TPEF, SHG, and THG images can acquire complementary information about tissues, including cells, collagen fibers, lipids, and interfaces, all label-free. The compact MPM imaging probe is developed using miniature objective lens and a micro-electro-mechanical scanner. Furthermore, the femtosecond laser pulses are delivered by a single mode fiber and the signals are collected by a multimode fiber, which makes the miniaturized MPM directly fiber-coupled, compact, and portable. Design considerations on using the dual excitation wavelengths are discussed. Multimodal and label-free imaging by TPEF, SHG, and THG are demonstrated on biological samples. The miniaturized multimodal MPM is shown to have great potential for label-free imaging of thick and live tissues.

10.
J Biomed Opt ; 14(2): 024008, 2009.
Article in English | MEDLINE | ID: mdl-19405738

ABSTRACT

Confocal microendoscopy permits the acquisition of high-resolution real-time confocal images of bronchial mucosa via the instrument channel of an endoscope. We report here on the construction and validation of a confocal fluorescence microendoscope and its use to acquire images of bronchial epithelium in vivo. Our objective is to develop an imaging method that can distinguish preneoplastic lesions from normal epithelium to enable us to study the natural history of these lesions and the efficacy of chemopreventive agents without biopsy removal of the lesion that can introduce a spontaneous regression bias. The instrument employs a laser-scanning engine and bronchoscope-compatible confocal probe consisting of a fiber-optic image guide and a graded-index objective lens. We assessed the potential of topical application of physiological pH cresyl violet (CV) as a fluorescence contrast-enhancing agent for the visualization of tissue morphology. Images acquired ex vivo with the confocal microendoscope were first compared with a bench-top confocal fluorescence microscope and conventional histology. Confocal images from five sites topically stained with CV were then acquired in vivo from high-risk smokers and compared to hematoxylin and eosin stained sections of biopsies taken from the same site. Sufficient contrast in the confocal imagery was obtained to identify cells in the bronchial epithelium. However, further improvements in the miniature objective lens are required to provide sufficient axial resolution for accurate classification of preneoplastic lesions.


Subject(s)
Bronchial Neoplasms/pathology , Endoscopes , Image Enhancement/instrumentation , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Respiratory Mucosa/pathology , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Humans , Miniaturization , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
11.
J Immunother Cancer ; 7(1): 13, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651131

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) is a complex mixture of tumor epithelium, stroma and immune cells, and the immune component of the TME is highly prognostic for tumor progression and patient outcome. In lung cancer, anti-PD-1 therapy significantly improves patient survival through activation of T cell cytotoxicity against tumor cells. Direct contact between CD8+ T cells and target cells is necessary for CD8+ T cell activity, indicating that spatial organization of immune cells within the TME reflects a critical process in anti-tumor immunity. Current immunohistochemistry (IHC) imaging techniques identify immune cell numbers and densities, but lack assessment of cell-cell spatial relationships (or "cell sociology"). Immune functionality, however, is often dictated by cell-to-cell contact and cannot be resolved by simple metrics of cell density (for example, number of cells per mm2). To address this issue, we developed a Hyperspectral Cell Sociology technology platform for the analysis of cell-cell interactions in multi-channel IHC-stained tissue. METHODS: Tissue sections of primary tumors from lung adenocarcinoma patients with known clinical outcome were stained using multiplex IHC for CD3, CD8, and CD79a, and hyperspectral image analysis determined the phenotype of all cells. A Voronoi diagram for each cell was used to approximate cell boundaries, and the cell type of all neighboring cells was identified and quantified. Monte Carlo analysis was used to assess whether cell sociology patterns were likely due to random distributions of the cells. RESULTS: High density of intra-tumoral CD8+ T cells was significantly associated with non-recurrence of tumors. A cell sociology pattern of CD8+ T cells surrounded by tumor cells was more significantly associated with non-recurrence compared to CD8+ T cell density alone. CD3+ CD8- T cells surrounded by tumor cells was also associated with non-recurrence, but at a similar significance as cell density alone. Cell sociology metrics improved recurrence classifications of 12 patients. Monte Carlo re-sampling analysis determined that these cell sociology patterns were non-random. CONCLUSION: Hyperspectral Cell Sociology expands our understanding of the complex interplay between tumor cells and immune infiltrate. This technology could improve predictions of responses to immunotherapy and lead to a deeper understanding of anti-tumor immunity.


Subject(s)
Adenocarcinoma of Lung/immunology , B-Lymphocytes/physiology , Cell Communication , Lung Neoplasms/immunology , T-Lymphocytes/physiology , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Male , Middle Aged
12.
Nat Commun ; 10(1): 5438, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780666

ABSTRACT

Gene function in cancer is often cell type-specific. The epithelial cell-specific transcription factor ELF3 is a documented tumor suppressor in many epithelial tumors yet displays oncogenic properties in others. Here, we show that ELF3 is an oncogene in the adenocarcinoma subtype of lung cancer (LUAD), providing genetic, functional, and clinical evidence of subtype specificity. We discover a region of focal amplification at chromosome 1q32.1 encompassing the ELF3 locus in LUAD which is absent in the squamous subtype. Gene dosage and promoter hypomethylation affect the locus in up to 80% of LUAD analyzed. ELF3 expression was required for tumor growth and a pan-cancer expression network analysis supports its subtype and tissue specificity. We further show that ELF3 displays strong prognostic value in LUAD but not LUSC. We conclude that, contrary to many other tumors of epithelial origin, ELF3 is an oncogene and putative therapeutic target in LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Carcinoma, Squamous Cell/genetics , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , Oncogenes/genetics , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , A549 Cells , Animals , Carcinoma/genetics , DNA Methylation , Gene Amplification/genetics , Gene Dosage , Humans , Mice , Neoplasm Transplantation , Protein Interaction Maps , Transplantation, Heterologous
13.
Head Neck ; 40(6): 1263-1270, 2018 06.
Article in English | MEDLINE | ID: mdl-29451953

ABSTRACT

BACKGROUND: The purpose of this study was to use quantitative tissue phenotype (QTP) to assess the surgical margins to examine if a fluorescence visualization-guided surgical approach produces a shift in the surgical field by sparing normal tissue while catching high-risk tissue. METHODS: Using our QTP to calculate the degree of nuclear chromatin abnormalities, Nuclear Phenotypic Score (NPS), we analyzed 1290 biopsy specimens taken from surgical samples of 248 patients enrolled in the Efficacy of Optically-guided Surgery in the Management of Early-staged Oral Cancer (COOLS) trial. Multiple margin specimens were collected from each surgical specimen according to the presence of fluorescence visualization alterations and the distance to the surgical margins. RESULTS: The NPS in fluorescence visualization-altered (fluorescence visualization-positive) samples was significantly higher than that in fluorescence visualization-retained (fluorescence visualization-negative) samples. There was a constant trend of decreasing NPS of margin samples from non-adjacent-fluorescence visualization margins to adjacent-fluorescence visualization margins. CONCLUSION: Our results suggested that using fluorescence visualization to guide surgery has the potential to spare more normal tissue at surgical margins.


Subject(s)
Margins of Excision , Mouth Neoplasms/pathology , Mouth Neoplasms/surgery , Adult , Aged , Aged, 80 and over , Canada , Female , Fluorescence , Humans , Male , Middle Aged , Mouth Neoplasms/diagnostic imaging , Neoplasm Staging , Phenotype , Young Adult
14.
J Biomed Opt ; 22(8): 1-10, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28823113

ABSTRACT

Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.


Subject(s)
Carcinoma in Situ/diagnostic imaging , Early Detection of Cancer/methods , Microscopy, Confocal/methods , Mouth Neoplasms/diagnostic imaging , Precancerous Conditions/diagnostic imaging , Aged , Aged, 80 and over , Humans , Middle Aged , Pilot Projects
15.
J Biomed Opt ; 11(2): 024006, 2006.
Article in English | MEDLINE | ID: mdl-16674196

ABSTRACT

Early identification of high-risk disease could greatly reduce both mortality and morbidity due to oral cancer. We describe a simple handheld device that facilitates the direct visualization of oral-cavity fluorescence for the detection of high-risk precancerous and early cancerous lesions. Blue excitation light (400 to 460 nm) is employed to excite green-red fluorescence from fluorophores in the oral tissues. Tissue fluorescence is viewed directly along an optical axis collinear with the axis of excitation to reduce inter- and intraoperator variability. This robust, field-of-view device enables the direct visualization of fluorescence in the context of surrounding normal tissue. Results from a pilot study of 44 patients are presented. Using histology as the gold standard, the device achieves a sensitivity of 98% and specificity of 100% when discriminating normal mucosa from severe dysplasia/carcinoma in situ (CIS) or invasive carcinoma. We envisage this device as a suitable adjunct for oral cancer screening, biopsy guidance, and margin delineation.


Subject(s)
Carcinoma, Squamous Cell/diagnosis , Luminescent Measurements/instrumentation , Mouth Neoplasms/diagnosis , Spectrometry, Fluorescence/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Luminescent Measurements/methods , Miniaturization , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Fluorescence/methods
17.
JAMA Otolaryngol Head Neck Surg ; 142(3): 209-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26769431

ABSTRACT

IMPORTANCE: The prevalence of genetically altered cells in oral cancers has a negative influence on the locoregional recurrence rate and lowers survival. Fluorescence visualization (FV) can identify clinically occult, high-risk oral lesions by allowing health care professionals and surgeons to visualize and map occult disease. This process may improve overall survival by decreasing rates of locoregional recurrence. OBJECTIVE: To assess the efficacy of FV-guided surgery in reducing locoregional recurrence and improving overall survival. DESIGN, SETTING, AND PARTICIPANTS: A retrospective, case-control observational study was conducted on patients registered at a single oral oncology clinic from September 1, 2004, to August 31, 2009. The study included 246 patients 18 years or older with a diagnosis of a high-grade lesion (severe dysplasia or carcinoma in situ) or squamous cell carcinoma of less than 4 cm who underwent curative surgical treatment with at least 1 follow-up visit. Among these patients, 154 underwent surgery with FV guidance (FV group) and the other 92 underwent conventional surgery (control group). Demographic and lesional characteristics and outcomes were collected, and the key factors for the efficacy of FV-guided surgery were examined. Follow-up was completed on December 31, 2011, and data were analyzed from May 1 to November 30, 2013. MAIN OUTCOMES AND MEASURES: Local recurrence of oral lesions with a histologic grade of severe dysplasia or higher, the presence of regional failure (ie, a metastatic lesion in the cervical lymph nodes), or disease-free survival after surgery. RESULTS: Among the 246 patients included in the study (mean [SD] age, 60 [12] years; 108 women and 138 men), 156 had squamous cell carcinoma and 90 had high-grade lesions. There were no significant differences between the FV (n = 154) and control (n = 92) groups in age, smoking history, anatomical site of the lesion, tumor size, and previous oral cancer. Among the 156 patients with squamous cell carcinoma, the 92 patients in the FV group showed significant reduction in the 3-year local recurrence rate, from 40.6% (26 of 64 patients) to 6.5% (6 of 92 patients) (P < .001). Among the 90 patients with high-grade lesions, the 62 patients in the FV group showed a reduction in local recurrence rate from 11 of 28 patients (39.3%) to 5 of 62 patients (8.1%) (P < .001). The data also indicated that, compared with conventional surgery, the FV-guided approach for squamous cell carcinoma was associated with less regional failure (14 of 92 patients [15.2%] vs 16 of 64 [25.0%]; P = .08) and death (12 of 92 patients [13.0%] vs 13 of 64 [20.3%]; P = .22), although these differences were not statistically significant. CONCLUSIONS AND RELEVANCE: In this study, the use of FV as part of the surgical margin decision process significantly reduced the rate of local recurrence in preinvasive high-grade and early-stage oral cancers. An ongoing multicenter, phase 3, randomized surgical trial has completed accrual, and the data will be used to validate the results of this study.


Subject(s)
Carcinoma, Squamous Cell/surgery , Mouth Neoplasms/surgery , Neoplasm Staging/methods , Optical Imaging/methods , Oral Surgical Procedures/methods , Surgery, Computer-Assisted/methods , British Columbia/epidemiology , Carcinoma, Squamous Cell/pathology , Disease-Free Survival , Female , Fluorescence , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Mouth Neoplasms/pathology , Neoplasm Recurrence, Local/epidemiology , Retrospective Studies , Survival Rate/trends , Treatment Outcome
18.
J Biomed Opt ; 21(12): 126011, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27999860

ABSTRACT

Current diagnostic capabilities and limitations of fluorescence endomicroscopy in the cervix are assessed by qualitative and quantitative image analysis. Four cervical tissue types are investigated: normal columnar epithelium, normal and precancerous squamous epithelium, and stromal tissue. This study focuses on the perceived variability within and the subtle differences between the four tissue groups in the context of endomicroscopic in vivo pathology. Conclusions are drawn on the general ability to distinguish and diagnose tissue types, on the need for imaging depth control to enhance differentiation, and on the possible risks for diagnostic misinterpretations.


Subject(s)
Cervix Uteri/cytology , Cervix Uteri/diagnostic imaging , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Epithelial Cells/cytology , Equipment Design , Female , Humans , Pilot Projects , Squamous Intraepithelial Lesions of the Cervix/diagnostic imaging
19.
IEEE Trans Biomed Eng ; 62(8): 2044-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25775482

ABSTRACT

OBJECTIVE: Volatile organic compounds (VOCs) in exhaled breath as measured by electronic nose (e-nose) have utility as biomarkers to detect subjects at risk of having lung cancer in a screening setting. We hypothesize that breath analysis using an e-nose chemo-resistive sensor array could be used as a screening tool to discriminate patients diagnosed with lung cancer from high-risk smokers. METHODS: Breath samples from 191 subjects-25 lung cancer patients and 166 high-risk smoker control subjects without cancer-were analyzed. For clinical relevancy, subjects in both groups were matched for age, sex, and smoking histories. Classification and regression trees and discriminant functions classifiers were used to recognize VOC patterns in e-nose data. Cross-validated results were used to assess classification accuracy. Repeatability and reproducibility of e-nose data were assessed by measuring subject-exhaled breath in parallel across two e-nose devices. RESULTS: e-Nose measurements could distinguish lung cancer patients from high-risk control subjects, with a better than 80% classification accuracy. Subject sex and smoking status impacted classification as area under the curve results (ex-smoker males 0.846, ex-smoker female 0.816, current smoker male 0.745, and current smoker female 0.725) demonstrated. Two e-nose systems could be calibrated to give equivalent readings across subject-exhaled breath measured in parallel. CONCLUSIONS: e-Nose technology may have significant utility as a noninvasive screening tool for detecting individuals at increased risk for lung cancer. SIGNIFICANCE: The results presented further the case that VOC patterns could have real clinical utility to screen for lung cancer in the important growing ex-smoker population.


Subject(s)
Breath Tests/methods , Electronic Nose , Lung Neoplasms/diagnosis , Smoking/metabolism , Aged , Biomarkers/analysis , Early Detection of Cancer , Female , Humans , Lung Neoplasms/metabolism , Male , Middle Aged , Pattern Recognition, Automated , Reproducibility of Results , Volatile Organic Compounds/analysis
20.
Oral Oncol ; 50(12): 1123-30, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25240917

ABSTRACT

Worldwide, oral cancer is responsible for 170,000 deaths per year. Intervention to prevent this disease is a long sought after goal. Chemoprevention studies have focused on clinicopathological features of potentially malignant lesions (PML) in an effort to prevent their progression to cancer. However, prediction of future behavior for such lesions is difficult and remains a major challenge to such intervention. Different approaches to this problem have been tested in the past 20years. Early genetic progression models identified critical regions of allelic imbalance at 3p and 9p, and provided the basis for molecular markers to identify progressing PMLs. Subsequently, technological advances, such as genome-wide high-throughput array platforms, computer imaging, visualization technology and next generation sequencing, have broadened the scope for marker development and have the potential of further improving our ability to identify high-risk lesions in the near future either alone or in combination. In this article, we examine the milestones in the development of markers for PML progression. We emphasize the critical importance of networks among scientists, health professionals and community to facilitate the validation and application of putative markers into clinical practice. With a growing number of new agents to validate, it is necessary to coordinate the design and implementation of strategies for patient recruitment, integration of marker assessment, and the final translation of such approaches into clinical use.


Subject(s)
Biomarkers, Tumor/analysis , Disease Progression , Mouth Neoplasms/prevention & control , Precancerous Conditions/pathology , Humans , Precancerous Conditions/genetics , Risk Assessment/methods , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL