ABSTRACT
Congenital transmission of Trypanosoma cruzi is an important source of new Chagas infections worldwide. The mechanisms of congenital transmission remain poorly understood, but there is evidence that parasite factors are involved. Investigating changes in parasite strain diversity during transmission could provide insight into the parasite factors that influence the process. Here we use amplicon sequencing of a single copy T. cruzi gene to evaluate the diversity of infection in clinical samples from Chagas positive mothers and their infected infants. Several infants and mothers were infected with multiple parasite strains, mostly of the same TcV lineage, and parasite strain diversity was higher in infants than mothers. Two parasite haplotypes were detected exclusively in infant samples, while one haplotype was never found in infants. Together, these data suggest multiple parasites initiate a congenital infection and that parasite factors influence the probability of vertical transmission.
Subject(s)
Chagas Disease , Parasites , Trypanosoma cruzi , Female , Animals , Humans , Infant , Trypanosoma cruzi/genetics , Chagas Disease/congenital , Mothers , Infectious Disease Transmission, VerticalABSTRACT
Trypanosoma cruzi is the causative agent of Chagas disease, which causes 10,000 deaths per year. Despite the high mortality caused by the pathogen, relatively few parasite genomes have been assembled to date; even some commonly used laboratory strains do not have publicly available genome assemblies. This is at least partially due to T. cruzi's highly complex and highly repetitive genome: while describing the variation in genome content and structure is critical to better understanding T. cruzi biology and the mechanisms that underlie Chagas disease, the complexity of the genome defies investigation using traditional short read sequencing methods. Here, we have generated a high-quality whole genome assembly of the hybrid Tulahuen strain, a commercially available Type VI strain, using long read Nanopore sequencing without short read scaffolding. Using automated tools and manual curation for annotation, we report a genome with 25% repeat regions, 17% variable multigene family members, and 27% transposable elements. Notably, we find that regions with transposable elements are significantly enriched for surface proteins, and that on average surface proteins are closer to transposable elements compared to other coding regions. This finding supports a possible mechanism for diversification of surface proteins in which mobile genetic elements such as transposons facilitate recombination within the gene family. This work demonstrates the feasibility of nanopore sequencing to resolve complex regions of T. cruzi genomes, and with these resolved regions, provides support for a possible mechanism for genomic diversification.
ABSTRACT
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a neglected parasitic disease that affects approximately 6 million individuals worldwide. Of those infected, 20-30% will go on to develop chronic Chagas cardiomyopathy (CCC), and ultimately many of these individuals will progress to advanced heart failure. The mechanism by which this progression occurs is poorly understood, as few studies have focused on early CCC. In this study, we sought to understand the physiologic changes associated with T. cruzi infection and the development of CCC. We analyzed gene expression in the peripheral blood of asymptomatic Chagas patients with early structural heart disease, Chagas patients without any signs or symptoms of disease, and Chagas-negative patients with and without early structural heart disease. Our analysis shows that early CCC was associated with a downregulation of various peripheral immune response genes, with gene expression changes suggestive of reduced antigen presentation and T cell activation. Notably, these genes and processes were distinct from those of early cardiomyopathy in Chagas-negative patients, suggesting that the processes mediating CCC may be unique from those mediating progression to other cardiomyopathies. This work highlights the importance of the immune response in early CCC, providing insight into the early pathogenesis of this disease. The changes we have identified may serve as biomarkers of progression and could inform strategies for the treatment of CCC in its early stages, before significant cardiac damage has occurred.