Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Affiliation country
Publication year range
1.
Glycobiology ; 31(10): 1295-1307, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34224566

ABSTRACT

Skeletal muscle has the intrinsic ability to self-repair through a multifactorial process, but many aspects of its cellular and molecular mechanisms are not fully understood. There is increasing evidence that some members of the mammalian ß-galactoside-binding protein family (galectins) are involved in the muscular repair process (MRP), including galectin-3 (Gal-3). However, there are many questions about the role of this protein on muscle self-repair. Here, we demonstrate that endogenous Gal-3 is required for: (i) muscle repair in vivo by using a chloride-barium myolesion mouse model and (ii) mouse primary myoblasts myogenic programming. Injured muscle from Gal-3 knockout mice (GAL3KO) showed persistent inflammation associated with compromised muscle repair and the formation of fibrotic tissue on the lesion site. In GAL3KO mice, osteopontin expression remained high even after 7 and 14 d of the myolesion, while Myoblast differentiation transcription factor (MyoD) and myogenin had decreased their expression. In GAL3KO mouse primary myoblast cell culture, Paired Box 7 (Pax7) detection seems to sustain even when cells are stimulated to differentiation and MyoD expression is drastically reduced. The detection and temporal expression levels of these transcriptional factors appear to be altered in Gal-3-deficient myoblast. Gal-3 expression in wild-type mice for GAL3KO states, both in vivo and in vitro, in sarcoplasm/cytoplasm and myonuclei; as differentiation proceeds, Gal-3 expression is drastically reduced, and its location is confined to the sarcolemma/plasma cell membrane. We also observed a change in the temporal-spatial profile of Gal-3 expression and muscle transcription factors levels during the myolesion. Overall, these results demonstrate that endogenous Gal-3 is required for the skeletal muscle repair process.


Subject(s)
Galectin 3/metabolism , Muscle, Skeletal/metabolism , Animals , Barium Compounds/administration & dosage , Barium Compounds/pharmacology , Chlorides/administration & dosage , Chlorides/pharmacology , Galectin 3/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology
2.
FASEB J ; 34(9): 12946-12962, 2020 09.
Article in English | MEDLINE | ID: mdl-32772437

ABSTRACT

Although we have shown that catecholamines suppress the activity of the Ubiquitin-Proteasome System (UPS) and atrophy-related genes expression through a cAMP-dependent manner in skeletal muscle from rodents, the underlying mechanisms remain unclear. Here, we report that a single injection of norepinephrine (NE; 1 mg kg-1 ; s.c) attenuated the fasting-induced up-regulation of FoxO-target genes in tibialis anterior (TA) muscles by the stimulation of PKA/CREB and Akt/FoxO1 signaling pathways. In addition, muscle-specific activation of PKA by the overexpression of PKA catalytic subunit (PKAcat) suppressed FoxO reporter activity induced by (1) a wild-type; (2) a non-phosphorylatable; (3) a non-phosphorylatable and non-acetylatable forms of FoxO1 and FoxO3; (4) downregulation of FoxO protein content, and probably by (5) PGC-1α up-regulation. Consistently, the overexpression of the PKAcat inhibitor (PKI) up-regulated FoxO activity and the content of Atrogin-1 and MuRF1, as well as induced muscle fiber atrophy, the latter effect being prevented by the overexpression of a dominant negative (d. n.) form of FoxO (d.n.FoxO). The sustained overexpression of PKAcat induced fiber-type transition toward a smaller, slower, and more oxidative phenotype and improved muscle resistance to fatigue. Taken together, our data provide the first evidence that endogenous PKA activity is required to restrain the basal activity of FoxO and physiologically important to maintain skeletal muscle mass.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Forkhead Box Protein O1/metabolism , Muscle, Skeletal/enzymology , Muscular Atrophy/metabolism , Animals , Cell Line , Forkhead Box Protein O3/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Myoblasts, Skeletal/enzymology , Signal Transduction
3.
EMBO Rep ; 20(4)2019 04.
Article in English | MEDLINE | ID: mdl-30890538

ABSTRACT

Cachexia is a wasting disorder that accompanies many chronic diseases including cancer and results from an imbalance of energy requirements and energy uptake. In cancer cachexia, tumor-secreted factors and/or tumor-host interactions cause this imbalance, leading to loss of adipose tissue and skeletal and cardiac muscle, which weakens the body. In this review, we discuss how energy enters the body and is utilized by the different organs, including the gut, liver, adipose tissue, and muscle, and how these organs contribute to the energy wasting observed in cachexia. We also discuss futile cycles both between the organs and within the cells, which are often used to fine-tune energy supply under physiologic conditions. Ultimately, understanding the complex interplay of pathologic energy-wasting circuits in cachexia can bring us closer to identifying effective treatment strategies for this devastating wasting disease.


Subject(s)
Cachexia/metabolism , Energy Metabolism , Adipose Tissue/metabolism , Animals , Cachexia/etiology , Gastrointestinal Absorption , Humans , Liver/metabolism , Muscle, Skeletal/metabolism , Neoplasms/complications , Neoplasms/metabolism , Organ Specificity
4.
Sensors (Basel) ; 19(8)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003524

ABSTRACT

Surface Electromyography (sEMG) signal processing has a disruptive technology potential to enable a natural human interface with artificial limbs and assistive devices. However, this biosignal real-time control interface still presents several restrictions such as control limitations due to a lack of reliable signal prediction and standards for signal processing among research groups. Our paper aims to present and validate our sEMG database through the signal classification performed by the reliable forms of our Extreme Learning Machines (ELM) classifiers, used to maintain a more consistent signal classification. To perform the signal processing, we explore the use of a stochastic filter based on the Antonyan Vardan Transform (AVT) in combination with two variations of our Reliable classifiers (denoted R-ELM and R-Regularized ELM (RELM), respectively), to derive a reliability metric from the system, which autonomously selects the most reliable samples for the signal classification. To validate and compare our database and classifiers with related papers, we performed the classification of the whole of Databases 1, 2, and 6 (DB1, DB2, and DB6) of the NINAProdatabase. Our database presented consistent results, while the reliable forms of ELM classifiers matched or outperformed related papers, reaching average accuracies higher than 99 % for the IEEdatabase, while average accuracies of 75 . 1 % , 79 . 77 % , and 69 . 83 % were achieved for NINAPro DB1, DB2, and DB6, respectively.


Subject(s)
Artificial Limbs , Databases, Factual , Electromyography/trends , Movement/physiology , Adult , Algorithms , Amputees , Female , Humans , Machine Learning , Male , Neural Networks, Computer , Pattern Recognition, Automated , Signal Processing, Computer-Assisted , Support Vector Machine , Upper Extremity/physiopathology
5.
Braz J Infect Dis ; 27(6): 103689, 2023.
Article in English | MEDLINE | ID: mdl-37972650

ABSTRACT

Rapid Diagnostic Tests (RDT) are useful to identify syphilis cases, particularly for hard-to-reach populations and if laboratory services are scarce. However, RDT performance may be suboptimal. We aimed to assess the sensitivity and specificity of a syphilis RDT using well-characterized blood donors' samples. We categorized samples from 811 blood donors into five groups: 1 - Samples with reactive Chemiluminescence (QML), FTA-Abs, and VDRL; 2 - Samples with reactive QML and FTA-Abs, and nonreactive VDRL; 3 - Samples with reactive QML, and nonreactive for other markers (false-positives); 4 - Controls with nonreactive QML; and 5 - Samples reactive for HIV, with nonreactive QML. Sensitivity was tested in groups 1 (overall and according to VDRL titers) and 2; specificity was tested in groups 3‒5. The RDT had high specificity, even in samples reactive for HIV. The sensitivity was high (91.9%) in samples with reactive VDRL but varied between 75.0%‒100% according to VDRL titers. The overall sensitivity was lower (81.3%) in samples with reactive FTA-Abs and nonreactive VDRL. The RDT is a useful tool to detect active syphilis but may be more limited for cases with very early or remote infection, or those with prior treatment. When higher sensitivity is needed, additional strategies including recurrent testing or laboratory-based tests may be required.


Subject(s)
HIV Infections , Syphilis , Humans , Syphilis/diagnosis , Blood Donors , Rapid Diagnostic Tests , Syphilis Serodiagnosis , Sensitivity and Specificity , HIV Infections/diagnosis
6.
Lipids Health Dis ; 10: 66, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21526994

ABSTRACT

BACKGROUND: Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. METHODS: Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. RESULTS: Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. CONCLUSIONS: Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.


Subject(s)
Feeding Behavior/drug effects , Fish Oils/administration & dosage , Fish Oils/pharmacology , Insulin Resistance , Insulin/metabolism , Lipids/blood , Obesity/metabolism , Animals , Diet , Fatty Acids/analysis , Insulin/blood , Male , Muscle, Skeletal/metabolism , Obesity/blood , Rats , Rats, Wistar , Sodium Glutamate/administration & dosage
7.
Peptides ; 146: 170677, 2021 12.
Article in English | MEDLINE | ID: mdl-34695513

ABSTRACT

Calcitonin Gene-Related Peptide (CGRP) is a potent vasodilator peptide widely distributed in the central nervous system and various peripheral tissues, including cardiac muscle. However, its role in heart protein metabolism remains unknown. We examined the acute effects of CGRP on autophagy and the related signaling pathways in the heart mice and cultured neonatal cardiomyocytes. CGRP (100 µg kg-1; s.c.) or 0.9 % saline was injected in awake male C57B16 mice, and the metabolic profile was determined up to 60 min. In fed mice, CGRP drastically increased glycemia and reduced insulinemia, an effect that was accompanied by reduced cardiac phosphorylation levels of Akt at Ser473 without affecting FoxO. Despite these catabolic effects, CGRP acutely inhibited autophagy as estimated by the decrease in LC3II:LC3I and autophagic flux. In addition, the fasting-induced autophagic flux in mice hearts was entirely abrogated by one single injection of CGRP. In parallel, CGRP stimulated PKA/CREB and mTORC1 signaling and increased the phosphorylation of Unc51-like kinase-1 (ULK1), an essential protein in autophagy initiation. Similar effects were observed in cardiomyocytes, in which CGRP also inhibited autophagic flux and stimulated Akt and FoxO phosphorylation. These findings suggest that CGRP in vivo acutely suppresses autophagy in the heart of fed and fasted mice, most likely through the activation of PKA/mTORC1 signaling but independent of Akt.


Subject(s)
Autophagy/drug effects , Calcitonin Gene-Related Peptide/physiology , Heart/drug effects , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Mice , Myocytes, Cardiac/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effects
8.
Cancers (Basel) ; 14(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008253

ABSTRACT

BACKGROUND: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models. METHODS: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26). Tumor size, body and organ weights, fiber cross-sectional area, circulating cachexia biomarkers, and molecular markers of muscle atrophy and adipose tissue wasting are shown. We correlate inflammatory markers and body weight dependent on age in patients with cancer. RESULTS: We note fundamental differences between mouse strains. Aging aggravates weight loss in LLC-injected C57BL/6J mice, drives it in C57BL/6N mice, and does not influence weight loss in C26-injected BALB/c mice. Glucose tolerance is unchanged in cachectic young and old mice. The stress marker GDF15 is elevated in cachectic BALB/c mice independent of age and increased in old C57BL/6N and J mice. Inflammatory markers correlate significantly with weight loss only in young mice and patients. CONCLUSIONS: Aging affects cachexia development and progression in mice in a strain-dependent manner and influences the inflammatory profile in both mice and patients. Age is an important factor to consider for future cachexia studies.

9.
J Cachexia Sarcopenia Muscle ; 12(5): 1333-1351, 2021 10.
Article in English | MEDLINE | ID: mdl-34427055

ABSTRACT

BACKGROUND: Cancer cachexia (CCx) is a multifactorial wasting disorder characterized by involuntary loss of body weight that affects many cancer patients and implies a poor prognosis, reducing both tolerance to and efficiency of anticancer therapies. Actual challenges in management of CCx remain in the identification of tumour-derived and host-derived mediators involved in systemic inflammation and tissue wasting and in the discovery of biomarkers that would allow for an earlier and personalized care of cancer patients. The aim of this study was to identify new markers of CCx across different species and tumour entities. METHODS: Quantitative secretome analysis was performed to identify specific factors characteristic of cachexia-inducing cancer cell lines. To establish the subsequently identified phospholipase PLA2G7 as a marker of CCx, plasma PLA2G7 activity and/or protein levels were measured in well-established mouse models of CCx and in different cohorts of weight-stable and weight-losing cancer patients with different tumour entities. Genetic PLA2G7 knock-down in tumours and pharmacological treatment using the well-studied PLA2G7 inhibitor darapladib were performed to assess its implication in the pathogenesis of CCx in C26 tumour-bearing mice. RESULTS: High expression and secretion of PLA2G7 were hallmarks of cachexia-inducing cancer cell lines. Circulating PLA2G7 activity was increased in different mouse models of CCx with various tumour entities and was associated with the severity of body wasting. Circulating PLA2G7 levels gradually rose during cachexia development. Genetic PLA2G7 knock-down in C26 tumours only partially reduced plasma PLA2G7 levels, suggesting that the host is also an important contributor. Chronic treatment with darapladib was not sufficient to counteract inflammation and tissue wasting despite a strong inhibition of the circulating PLA2G7 activity. Importantly, PLA2G7 levels were also increased in colorectal and pancreatic cancer patients with CCx. CONCLUSIONS: Overall, our data show that despite no immediate pathogenic role, at least when targeted as a single entity, PLA2G7 is a consistent marker of CCx in both mice and humans. The early increase in circulating PLA2G7 levels in pre-cachectic mice supports future prospective studies to assess its potential as biomarker for cancer patients.


Subject(s)
Cachexia , Pancreatic Neoplasms , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Animals , Benzaldehydes , Biomarkers , Cachexia/drug therapy , Cachexia/etiology , Humans , Mice , Oximes , Prospective Studies
10.
Nat Commun ; 12(1): 2999, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016966

ABSTRACT

The proper functional interaction between different tissues represents a key component in systemic metabolic control. Indeed, disruption of endocrine inter-tissue communication is a hallmark of severe metabolic dysfunction in obesity and diabetes. Here, we show that the FNDC4-GPR116, liver-white adipose tissue endocrine axis controls glucose homeostasis. We found that the liver primarily controlled the circulating levels of soluble FNDC4 (sFNDC4) and lowering of the hepatokine FNDC4 led to prediabetes in mice. Further, we identified the orphan adhesion GPCR GPR116 as a receptor of sFNDC4 in the white adipose tissue. Upon direct and high affinity binding of sFNDC4 to GPR116, sFNDC4 promoted insulin signaling and insulin-mediated glucose uptake in white adipocytes. Indeed, supplementation with FcsFNDC4 in prediabetic mice improved glucose tolerance and inflammatory markers in a white-adipocyte selective and GPR116-dependent manner. Of note, the sFNDC4-GPR116, liver-adipose tissue axis was dampened in (pre) diabetic human patients. Thus our findings will now allow for harnessing this endocrine circuit for alternative therapeutic strategies in obesity-related pre-diabetes.


Subject(s)
Adipose Tissue, White/metabolism , Membrane Proteins/metabolism , Prediabetic State/metabolism , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adolescent , Adult , Aged , Animals , CHO Cells , Cohort Studies , Cricetulus , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Knockdown Techniques , Glucose/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Insulin/metabolism , Insulin Resistance , Islets of Langerhans/metabolism , Liver/metabolism , Male , Membrane Proteins/administration & dosage , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Middle Aged , NIH 3T3 Cells , Prediabetic State/blood , Prediabetic State/drug therapy , Prediabetic State/etiology , Primary Cell Culture , Proteins/analysis , Receptors, G-Protein-Coupled/blood , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Young Adult
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3759-3762, 2020 07.
Article in English | MEDLINE | ID: mdl-33018819

ABSTRACT

A surface Electromyography (sEMG) contaminant type detector has been developed by using a Recurrent Neural Network (RNN) with Long Short-Term (LSMT) units in its hidden layer. This setup may reduce the contamination detection processing time since there is no need for feature extraction so that the classification occurs directly from the sEMG signal. The publicly available NINAPro (Non-Invasive Adaptive Prosthetics) database sEMG signals was used to train and test the network. Signals were contaminated with White Gaussian Noise, Movement Artifact, ECG and Power Line Interference. Two out of the 40 healthy subjects' data were considered to train the network and the other 38 to test it. Twelve models were trained under a -20dB contamination, one for each channel. ANOVA results showed that the training channel could affect the classification accuracy if SNR = -20dB and 0dB. An overall accuracy of 97.72% has been achieved by one of the models.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Artifacts , Electromyography , Neural Networks, Computer
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6603-6606, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947355

ABSTRACT

Despite all the recent developments of using the surface electromyography (sEMG) as a control signal, reliable classifications still remain an arduous task due to overlapping classes and classification ripples. In this paper, we present a straightforward approach to avoid classification ripple based on smoothing the arg max value of an Extreme Learning Machine (ELM) classifier. We compare the baseline accuracy of the classifier with an arg max filtered by a traditional Exponential Smoothing Filter (ESF) and our adaptation of Antonyan Vardan Transform (AVT). The classifiers were evaluated using sEMG data acquired through 12 channels from four subjects performing 17 different movements of forearm and fingers with three repetitions each. In the best scenario, our methods reached results higher than 96% and 82% of overall and weighted accuracy, respectively. Those results match or outperform similar papers of the literature using a simpler model, which may help the application of the techniques on embedded platforms and make the practical use of such devices more feasible.


Subject(s)
Electromyography , Signal Processing, Computer-Assisted , Support Vector Machine , Algorithms , Fingers , Humans , Movement
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3620-3623, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946660

ABSTRACT

This study aims at estimating a virtual surface Electromyography (sEMG) channel through a Recurrent Neural Network (RNN) by using Long Short-Term Memory (LSTM) nodes. The virtual channel is used to classify hand postures from the publicly NinaPro database with a multi-class, one-against-all Support Vector Machine (SVM) using the Root Mean Square RMS of the sEMG signal as feature. The classification of the signals through the virtual channel was compared with uncontaminated data and data contaminated with noise saturation. The hit rate from the clean data has averaged 73.96% ± 3.02%. The classification from the contaminated data of one of the channels has improved from 9.29% ± 4.42% to 66.48% ± 6.11% with the virtual channel.


Subject(s)
Electromyography , Neural Networks, Computer , Support Vector Machine , Algorithms , Databases, Factual , Hand , Humans
14.
Mol Metab ; 28: 91-106, 2019 10.
Article in English | MEDLINE | ID: mdl-31331823

ABSTRACT

OBJECTIVE: Although it is well established that a-calcitonin gene-related peptide (CGRP) stabilizes muscle-type cholinergic receptors nicotinic subunits (AChR), the underlying mechanism by which this neuropeptide regulates muscle protein metabolism and neuromuscular junction (NMJ) morphology is unclear. METHODS: To elucidate the mechanisms how CGRP controls NMJ stability in denervated mice skeletal muscles, we carried out physiological, pharmacological, and molecular analyses of atrophic muscles induced by sciatic nerve transection. RESULTS: Here, we report that CGRP treatment in vivo abrogated the deleterious effects on NMJ upon denervation (DEN), an effect that was associated with suppression of skeletal muscle proteolysis, but not stimulation of protein synthesis. CGRP also blocked the DEN-induced increase in endocytic AChR vesicles and the elevation of autophagosomes per NMJ area. The treatment of denervated animals with rapamycin blocked the stimulatory effects of CGRP on mTORC1 and its inhibitory actions on autophagic flux and NMJ degeneration. Furthermore, CGRP inhibited the DEN-induced hyperactivation of Ca2+-dependent proteolysis, a degradative system that has been shown to destabilize NMJ. Consistently, calpain was found to be activated by cholinergic stimulation in myotubes leading to the dispersal of AChR clusters, an effect that was abolished by CGRP. CONCLUSION: Taken together, these data suggest that the inhibitory effect of CGRP on autophagy and calpain may represent an important mechanism for the preservation of synapse morphology when degradative machinery is exacerbated upon denervation conditions.


Subject(s)
Autophagy/drug effects , Calcitonin Gene-Related Peptide/pharmacology , Calpain/antagonists & inhibitors , Muscle, Skeletal/drug effects , Neuromuscular Junction/drug effects , Vasodilator Agents/pharmacology , Animals , Calpain/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism
15.
J Cachexia Sarcopenia Muscle ; 10(2): 455-475, 2019 04.
Article in English | MEDLINE | ID: mdl-30932373

ABSTRACT

BACKGROUND: Stimulation of ß2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS: Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the ß2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 µg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 µg kg-1  day-1 ) for 30 days. RESULTS: In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of ß2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS: NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo ß2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Proteostasis/drug effects , Signal Transduction/drug effects , Animals , Autophagy/drug effects , Lysosomes/metabolism , Male , Mice , Mice, Knockout , Muscle Proteins/metabolism , Muscle Strength , Muscle, Skeletal/physiopathology , Phosphatidylinositol 3-Kinases , Proteolysis , Proto-Oncogene Proteins c-akt/metabolism
16.
Braz. j. infect. dis ; 27(6): 103689, 2023. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1528089

ABSTRACT

Abstract Rapid Diagnostic Tests (RDT) are useful to identify syphilis cases, particularly for hard-to-reach populations and if laboratory services are scarce. However, RDT performance may be suboptimal. We aimed to assess the sensitivity and specificity of a syphilis RDT using well-characterized blood donors' samples. We categorized samples from 811 blood donors into five groups: 1 - Samples with reactive Chemiluminescence (QML), FTA-Abs, and VDRL; 2 - Samples with reactive QML and FTA-Abs, and nonreactive VDRL; 3 - Samples with reactive QML, and nonreactive for other markers (false-positives); 4 - Controls with nonreactive QML; and 5 - Samples reactive for HIV, with nonreactive QML. Sensitivity was tested in groups 1 (overall and according to VDRL titers) and 2; specificity was tested in groups 3‒5. The RDT had high specificity, even in samples reactive for HIV. The sensitivity was high (91.9%) in samples with reactive VDRL but varied between 75.0%‒100% according to VDRL titers. The overall sensitivity was lower (81.3%) in samples with reactive FTA-Abs and nonreactive VDRL. The RDT is a useful tool to detect active syphilis but may be more limited for cases with very early or remote infection, or those with prior treatment. When higher sensitivity is needed, additional strategies including recurrent testing or laboratory-based tests may be required.

17.
J Appl Physiol (1985) ; 122(5): 1114-1124, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27932681

ABSTRACT

Although it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O2 for 40 s at 9-min intervals). Animals were euthanized, and the soleus and extensor digitorum longus (EDL) muscles were harvested and incubated in vitro for measurements of protein turnover. AIH increased plasma levels of corticosterone and induced insulin resistance as estimated by the insulin tolerance test and lower rates of muscle glucose oxidation and the HOMA index. In both soleus and EDL muscles, rates of overall proteolysis increased after AIH. This rise was accompanied by an increased proteolytic activities of the ubiquitin(Ub)-proteasome system (UPS) and lysosomal and Ca2+-dependent pathways. Furthermore, AIH increased Ub-protein conjugates and gene expression of atrogin-1 and MuRF-1, two key Ub-protein ligases involved in muscle atrophy. In parallel, AIH increased the mRNA expression of the autophagy-related genes LC3b and GABARAPl1. In vitro rates of protein synthesis in skeletal muscles did not differ between AIH and control rats. ADX completely blocked the insulin resistance in hypoxic rats and the AIH-induced activation of proteolytic pathways and atrogene expression in both soleus and EDL muscles. These results demonstrate that AIH induces insulin resistance in association with activation of the UPS, the autophagic-lysosomal process, and Ca2+-dependent proteolysis through a glucocorticoid-dependent mechanism.NEW & NOTEWORTHY Since hypoxia is a condition in which the body is deprived of adequate oxygen supply and muscle wasting is induced, the present work provides evidence linking hypoxia to proteolysis through a glucocorticoid-dependent mechanism. We show that the activation of proteolytic pathways, atrophy-related genes, and insulin resistance in rats exposed to acute intermittent hypoxia was abolished by surgical removal of adrenal gland. This finding will be helpful for understanding of the muscle wasting in hypoxemic conditions.


Subject(s)
Glucocorticoids/metabolism , Hypoxia/physiopathology , Muscle, Skeletal/physiopathology , Animals , Calcium/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Hypoxia/metabolism , Insulin Resistance/physiology , Lysosomes/metabolism , Lysosomes/physiology , Male , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/physiology , Proteolysis , Rats , Rats, Wistar , Ubiquitin/metabolism
18.
PLoS One ; 12(12): e0189469, 2017.
Article in English | MEDLINE | ID: mdl-29267303

ABSTRACT

Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH) and 30% hypertrophic+dilated hearts (HD). Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.


Subject(s)
Biomarkers/metabolism , Cardiomegaly/metabolism , Dystrophin/metabolism , Animals , Blood Pressure , Blotting, Western , Cardiomegaly/diagnostic imaging , Cardiomegaly/physiopathology , Echocardiography , Fluorescent Antibody Technique , Male , Rats , Rats, Wistar
19.
Int J Biochem Cell Biol ; 72: 40-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26718975

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 µg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation.


Subject(s)
Autophagy/drug effects , Calcitonin Gene-Related Peptide/pharmacology , Lysosomes/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Proteolysis/drug effects , Signal Transduction/drug effects , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Denervation , Lysosomes/metabolism , Male , Mice , Microtubule-Associated Proteins/metabolism , Muscle, Skeletal/innervation , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
20.
Arq Bras Endocrinol Metabol ; 57(8): 594-602, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24343627

ABSTRACT

OBJECTIVE: This study investigated the effect of interval training on blood biochemistry and immune parameters in type 1 diabetic rats. MATERIALS AND METHODS: Male Wistar rats were divided into four groups: sedentary (SE, n = 15), interval training (IT, n = 17), diabetic sedentary (DSE, n = 17), diabetic interval training (DIT, n = 17). Diabetes was induced by i.v. injection of streptozotocin (60 mg/kg). Swimming Interval Training consisted of 30-s exercise with 30-s rest, for 30 minutes, during 6 weeks, four times a week, with an overload of 15% of body mass. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, phagocytic capacity, cationic vesicle content, and superoxide anion and hydrogen peroxide production by blood neutrophils and peritoneal macrophages were evaluated. Proliferation of mesenteric lymphocytes was also estimated. RESULTS: Interval training resulted in attenuation of the resting hyperglycemic state and decreased blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DSE group. Interval training increased all functionality parameters of peritoneal macrophages in the IT group. Interval training also led to a twofold increase in the proliferation of mesenteric lymphocytes after 6 weeks of exercise in the DIT group. CONCLUSION: Low-volume high-intensity physical exercise attenuates hyperglycemia and dislipidemia induced by type 1 diabetes, and induces changes in the functionality of innate and acquired immunity.


Subject(s)
Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Dyslipidemias/etiology , Hyperglycemia/etiology , Physical Conditioning, Animal/methods , Animals , Biomarkers , Blood Glucose/metabolism , Cell Proliferation , Diabetes Mellitus, Type 1/complications , Disease Models, Animal , Hydrogen Peroxide/metabolism , Male , Neutrophils/metabolism , Phagocytosis/physiology , Rats, Wistar , Sedentary Behavior , Streptozocin/pharmacology , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL