Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38986619

ABSTRACT

Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.

2.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761532

ABSTRACT

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Subject(s)
Chromosomes, Human/genetics , Enhancer Elements, Genetic , Gene Amplification , Oncogenes , Acetylation , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Survival/genetics , Chromatin/metabolism , DNA, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Genes, Neoplasm , Genetic Loci , Glioblastoma/genetics , Glioblastoma/pathology , Histones/metabolism , Humans , Neuroglia/metabolism
3.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392959

ABSTRACT

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Subject(s)
Adenine/analogs & derivatives , Brain Neoplasms/pathology , DNA Methylation , Glioblastoma/pathology , Adenine/analysis , Adenine/chemistry , Adult , Aged , AlkB Homolog 1, Histone H2a Dioxygenase/antagonists & inhibitors , AlkB Homolog 1, Histone H2a Dioxygenase/genetics , AlkB Homolog 1, Histone H2a Dioxygenase/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Cell Hypoxia , Child , Epigenomics , Female , Glioblastoma/metabolism , Glioblastoma/mortality , Heterochromatin/metabolism , Histones/metabolism , Humans , Kaplan-Meier Estimate , Male , Mice , Middle Aged , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Cell ; 155(3): 567-81, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24139898

ABSTRACT

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Subject(s)
Chromosomes, Human, X , Mutation , Neoplasms/genetics , X Chromosome Inactivation , Adult , Aged , DNA Replication , Female , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Polymorphism, Single Nucleotide , S Phase
5.
Nature ; 572(7767): 67-73, 2019 08.
Article in English | MEDLINE | ID: mdl-31043743

ABSTRACT

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Animals , Cerebellar Neoplasms/classification , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/metabolism , Child , Female , Fetus/cytology , Glioma/classification , Glioma/genetics , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors , Transcriptome/genetics
6.
Proc Natl Acad Sci U S A ; 119(29): e2202015119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858326

ABSTRACT

Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.


Subject(s)
Brain Neoplasms , Ependymoma , Epigenesis, Genetic , SOX9 Transcription Factor , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinogenesis/genetics , Ependymoma/genetics , Ependymoma/pathology , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/physiology
7.
Dev Neurosci ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527429

ABSTRACT

BACKGROUND: Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms. SUMMARY: Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state. KEY MESSAGES: To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets, but used as a tool to find new avenues of treatment.

8.
Nature ; 553(7686): 101-105, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29258295

ABSTRACT

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Subject(s)
Enhancer Elements, Genetic/genetics , Ependymoma/drug therapy , Ependymoma/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Molecular Targeted Therapy , Oncogenes/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Ependymoma/classification , Ependymoma/pathology , Female , Humans , Mice , Precision Medicine , RNA Interference , Xenograft Model Antitumor Assays
9.
Nature ; 547(7663): 355-359, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28678782

ABSTRACT

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Subject(s)
Drug Evaluation, Preclinical/methods , Glioblastoma/drug therapy , Glioblastoma/genetics , Molecular Targeted Therapy/trends , Transcriptional Elongation Factors/antagonists & inhibitors , Transcriptional Elongation Factors/metabolism , Animals , Cell Line, Tumor , Cell Survival , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Mice , RNA Interference , Transcription, Genetic , Tumor Microenvironment , Xenograft Model Antitumor Assays
10.
Genes Dev ; 29(12): 1203-17, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26109046

ABSTRACT

Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/therapy , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism
11.
Nature ; 529(7586): 351-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760213

ABSTRACT

The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.


Subject(s)
Cerebellar Neoplasms/therapy , Clone Cells/drug effects , Clone Cells/metabolism , Medulloblastoma/therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Selection, Genetic/drug effects , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Clone Cells/pathology , Craniospinal Irradiation , DNA Mutational Analysis , Disease Models, Animal , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Genome, Human/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Mice , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Radiotherapy, Image-Guided , Signal Transduction , Xenograft Model Antitumor Assays
12.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Article in English | MEDLINE | ID: mdl-31710777

ABSTRACT

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Subject(s)
Abnormalities, Multiple/epidemiology , Cerebellum/abnormalities , Eye Abnormalities/epidemiology , Health Personnel , Kidney Diseases, Cystic/epidemiology , Neurodevelopmental Disorders/epidemiology , Retina/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Abnormalities, Multiple/therapy , Brain Stem/pathology , Cerebellum/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/therapy , Health Planning Guidelines , Humans , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/therapy , Liver/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/therapy , Retina/pathology
13.
Acta Neuropathol ; 136(2): 211-226, 2018 08.
Article in English | MEDLINE | ID: mdl-29909548

ABSTRACT

Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.


Subject(s)
Ependymoma/genetics , Gene Expression Regulation, Neoplastic/genetics , Infratentorial Neoplasms/genetics , Mutation/genetics , Oncogene Proteins/genetics , DNA Methylation , Ependymoma/classification , Ependymoma/pathology , Female , Gene Expression Profiling , HEK293 Cells , Histones/genetics , Humans , Infratentorial Neoplasms/classification , Infratentorial Neoplasms/pathology , Male , Transfection
14.
Acta Neuropathol ; 136(2): 227-237, 2018 08.
Article in English | MEDLINE | ID: mdl-30019219

ABSTRACT

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.


Subject(s)
DNA Copy Number Variations/genetics , Ependymoma/classification , Ependymoma/genetics , Infratentorial Neoplasms/classification , Infratentorial Neoplasms/genetics , Adolescent , Adult , Age Factors , Child , Cohort Studies , DNA Methylation/genetics , Ependymoma/pathology , Ependymoma/surgery , Female , Gene Expression Profiling , Humans , Infratentorial Neoplasms/pathology , Infratentorial Neoplasms/surgery , Kaplan-Meier Estimate , Male , Microarray Analysis , Middle Aged , Young Adult
15.
Future Oncol ; 14(30): 3175-3186, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30418040

ABSTRACT

Advances in genomic, transcriptomic and epigenomic profiling now identifies pediatric ependymoma as a defined biological entity. Molecular interrogation has segregated these tumors into distinct biological subtypes based on anatomical location, age and clinical outcome, which now defines the need to tailor therapy even for histologically similar tumors. These findings now provide reasons for a paradigm shift in therapy, which should profile future clinical trials focused on targeted therapeutic strategies and risk-based treatment. The need to diagnose and differentiate the aggressive variants, which include the posterior fossa group A and the supratentorial RELA fusion subtypes, is imperative to escalate therapy and improve survival.


Subject(s)
Ependymoma/therapy , Animals , Clinical Trials as Topic , Combined Modality Therapy , Disease Management , Ependymoma/diagnosis , Ependymoma/etiology , Ependymoma/mortality , Humans , Treatment Outcome
16.
Nature ; 488(7409): 49-56, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22832581

ABSTRACT

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Genome, Human/genetics , Genomic Structural Variation/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Carrier Proteins/genetics , Cerebellar Neoplasms/metabolism , Child , DNA Copy Number Variations/genetics , Gene Duplication/genetics , Genes, myc/genetics , Genomics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proteins/genetics , RNA, Long Noncoding , Signal Transduction , Transforming Growth Factor beta/metabolism , Translocation, Genetic/genetics
17.
Curr Opin Oncol ; 29(6): 443-447, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28885433

ABSTRACT

PURPOSE OF REVIEW: To synthesize, integrate, and comment on recent research developments to our understanding of the molecular basis of ependymoma (EPN), and to place this in context with current treatment and research efforts. RECENT FINDINGS: Our recent understanding of the histologically defined molecular entity EPN has rapidly advanced through genomic, transcriptomic, and epigenomic profiling studies. SUMMARY: These advancements lay the groundwork for development of future EPN biomarkers, models, and therapeutics. Our review discusses these discoveries and their impact on our clinical understanding of this disease. Lastly, we offer insight into clinical and research areas requiring further validation, and open questions remaining in the field.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Ependymoma/diagnosis , Ependymoma/therapy , Animals , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Ependymoma/genetics , Ependymoma/pathology , Humans
18.
Acta Neuropathol ; 133(1): 5-12, 2017 01.
Article in English | MEDLINE | ID: mdl-27858204

ABSTRACT

Multiple independent genomic profiling efforts have recently identified clinically and molecularly distinct subgroups of ependymoma arising from all three anatomic compartments of the central nervous system (supratentorial brain, posterior fossa, and spinal cord). These advances motivated a consensus meeting to discuss: (1) the utility of current histologic grading criteria, (2) the integration of molecular-based stratification schemes in future clinical trials for patients with ependymoma and (3) current therapy in the context of molecular subgroups. Discussion at the meeting generated a series of consensus statements and recommendations from the attendees, which comment on the prognostic evaluation and treatment decisions of patients with intracranial ependymoma (WHO Grade II/III) based on the knowledge of its molecular subgroups. The major consensus among attendees was reached that treatment decisions for ependymoma (outside of clinical trials) should not be based on grading (II vs III). Supratentorial and posterior fossa ependymomas are distinct diseases, although the impact on therapy is still evolving. Molecular subgrouping should be part of all clinical trials henceforth.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Ependymoma/metabolism , Ependymoma/therapy , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Consensus , Disease Management , Ependymoma/genetics , Ependymoma/pathology , Humans , Neoplasm Staging
19.
Childs Nerv Syst ; 33(7): 1047-1051, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28623522

ABSTRACT

BACKGROUND: Mutations in the tail of histone H3 (K27M) are frequently found in pediatric midline high-grade glioma's but have rarely been reported in other malignancies. Recently, recurrent somatic nucleotide variants in histone H3 (H3 K27M) have been reported in group A posterior fossa ependymoma (EPN_PFA), an entity previously described to have no recurrent mutations. However, the true incidence of H3 K27M mutations in EPN_PFA is unknown. METHODS: In order to discern the frequency of K27M mutations in histone H3 in EPN_PFA, we analyzed 151 EPN_PFA previously profiled with genome-wide methylation arrays using a validated droplet digital PCR assay. RESULTS: We identified only 1 case out of 151 EPN_PFA harboring the K27M mutation indicating that histone mutations are extremely rare in EPN_PFA. Morphologically, this single mutated case is clearly consistent with an ependymoma, and the presence of the K27M mutation was confirmed using immunohistochemistry. DISCUSSION: K27M mutations are extremely rare in EPN_PFA. Routine evaluation of K27M mutations in EPN_PFA is of limited utility, and is unlikely to have any bearing on prognosis and/or future risk stratification.


Subject(s)
Brain Neoplasms/genetics , Ependymoma/genetics , Histones/genetics , Mutation/genetics , Brain Neoplasms/diagnostic imaging , Child , Ependymoma/diagnostic imaging , Histones/metabolism , Humans , Lysine/genetics , Magnetic Resonance Imaging , Male , Methionine/genetics
20.
Nature ; 466(7306): 632-6, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20639864

ABSTRACT

Understanding the biology that underlies histologically similar but molecularly distinct subgroups of cancer has proven difficult because their defining genetic alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher this heterogeneity by integrating matched genetic alterations and candidate cells of origin to generate accurate disease models. First, we identified subgroups of human ependymoma, a form of neural tumour that arises throughout the central nervous system (CNS). Subgroup-specific alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. To select cellular compartments most likely to give rise to subgroups of ependymoma, we matched the transcriptomes of human tumours to those of mouse neural stem cells (NSCs), isolated from different regions of the CNS at different developmental stages, with an intact or deleted Ink4a/Arf locus (that encodes Cdkn2a and b). The transcriptome of human supratentorial ependymomas with amplified EPHB2 and deleted INK4A/ARF matched only that of embryonic cerebral Ink4a/Arf(-/-) NSCs. Notably, activation of Ephb2 signalling in these, but not other, NSCs generated the first mouse model of ependymoma, which is highly penetrant and accurately models the histology and transcriptome of one subgroup of human supratentorial tumour. Further, comparative analysis of matched mouse and human tumours revealed selective deregulation in the expression and copy number of genes that control synaptogenesis, pinpointing disruption of this pathway as a critical event in the production of this ependymoma subgroup. Our data demonstrate the power of cross-species genomics to meticulously match subgroup-specific driver mutations with cellular compartments to model and interrogate cancer subgroups.


Subject(s)
Cell Compartmentation , Disease Models, Animal , Ependymoma/genetics , Ependymoma/pathology , Genomics , Mutation/genetics , Animals , Central Nervous System/cytology , Central Nervous System/growth & development , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Ependymoma/classification , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, p16 , Humans , Mice , Models, Biological , Polymorphism, Single Nucleotide/genetics , Receptor, EphB2/genetics , Receptor, EphB2/metabolism , Species Specificity , Stem Cells/cytology , Stem Cells/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL