ABSTRACT
BACKGROUND: Neuromuscular-blocking agents (NMBAs) can cause both IgE-dependent and IgE-independent anaphylactic reactions, with activation of the mast cell receptor MRGPRX2 being important to the latter. Sugammadex, a reversal agent for certain aminosteroid NMBAs, has been proposed as an antidote for these anaphylactic events with conflicting outcomes. OBJECTIVE: We further characterize the involvement of MRGPRX2 in NMBA-induced mast cell activation and determine how this is influenced by sugammadex. We then apply these in vitro results to infer the possible utility of sugammadex in the acute management of non-IgE-dependent anaphylaxis. METHODS: The LAD2 human mast cell line and a MRGPRX2 knock-down derivative were used to validate the involvement of MRGPRX2 and to test the effect of sugammadex on mast cell activation by NMBAs and other MRGPRX2 agonists. RESULTS: All MRGPRX2 agonists tested were shown to induce MRGPRX2-dependent LAD2 mast cell calcium mobilization and cytokine release and all, apart from rocuronium, induced degranulation. Co-treatment of mast cells with sugammadex and some MRGPRX2 agonists significantly reduced cell activation, but if sugammadex was administered a few minutes following stimulation, degranulation was not attenuated. However, addition of sugammadex up to 180 min following LAD2 MRGPRX2 stimulation, significantly reduced CCL2 mRNA and protein induction. CONCLUSIONS AND CLINICAL RELEVANCE: We show that sugammadex, known to reverse muscle blockade by certain NMBAs, is also able to reduce MRGPRX2 activation by NMBAs and other, but not all, MRGPRX2 agonists. As sugammadex was ineffective in attenuating mast cell degranulation when added rapidly post MRGPRX2 activation, this suggests against the agent having efficacy in controlling acute symptoms of anaphylaxis to NMBAs caused by MRGPRX2 activation. Interestingly, however, sugammadex did impair MRGPRX2-induced CCL2 release, suggesting that it may have some benefit in perhaps dampening less well-defined adverse effects of MRGPRX2-dependent anaphylaxis associated with the more slowly elaborated mast cell mediators.
Subject(s)
Anaphylaxis/drug therapy , Chemokine CCL2/drug effects , Mast Cells/drug effects , Nerve Tissue Proteins/drug effects , Neuromuscular Blocking Agents/pharmacology , Receptors, G-Protein-Coupled/drug effects , Receptors, Neuropeptide/drug effects , Sugammadex/pharmacology , Anaphylaxis/chemically induced , Antidotes/pharmacology , Atracurium/adverse effects , Cell Line , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Gene Knockdown Techniques , Humans , In Vitro Techniques , Mast Cells/immunology , Mast Cells/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuromuscular Blocking Agents/adverse effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Rocuronium/adverse effectsSubject(s)
Mast Cells , Nerve Tissue Proteins , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Humans , Mast Cells/immunology , Mast Cells/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/immunology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/metabolismABSTRACT
Primary ciliary dyskinesia is an inherited, currently incurable condition. In the respiratory system, primary ciliary dyskinesia causes impaired functioning of the mucociliary escalator, leading to nasal congestion, cough, and recurrent otitis media, and commonly progresses to cause more serious and permanent damage, including hearing deficits, chronic sinusitis, and bronchiectasis. New treatment options for the condition are thus necessary. In characterizing an immortalized human bronchial epithelial cell line (BCi-NS1.1) grown at an air-liquid interface to permit differentiation, we have identified that these cells have dyskinetic motile cilia. The cells had a normal male karyotype, and phenotypic markers of epithelial cell differentiation emerged, as previously shown. Ciliary beat frequency (CBF) as assessed by high-speed videomicroscopy was lower than normal (4.4 Hz). Although changes in CBF induced by known modulators were as expected, the cilia displayed a dyskinetic, circular beat pattern characteristic of central microtubular agenesis with outer doublet transposition. This ultrastructural defect was confirmed by electron microscopy. We propose that the BCi-NS1.1 cell line is a useful model system for examination of modulators of CBF and more specifically could be used to screen for novel drugs with the ability to enhance CBF and perhaps repair a dyskinetic ciliary beat pattern.
Subject(s)
Cell Differentiation/physiology , Cilia/pathology , Ciliary Motility Disorders/pathology , Dyskinesias/pathology , Epithelial Cells/cytology , Cell Line , Cells, Cultured , HumansABSTRACT
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcÉRIß) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Subject(s)
Membrane Proteins/metabolism , Multigene Family , Amino Acid Sequence , Animals , Cell Cycle , Disease , Humans , Ion Channels/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Signal TransductionABSTRACT
The emergence of multi-drug resistant Gram-negative bacteria has led to renewed interest in the antimicrobial activity of polymyxins and novel polymyxin analogues (e.g. nonapeptides and octapeptin). In some individuals, clinically used polymyxins can cause acute hypersensitivity reactions through mast cell activation, with a recent study attributing this effect to activation of the MAS-related G protein-coupled receptor X2 (MRGPRX2). In the present study, HEK293 cells expressing human MRGPRX2 and the human mast cell line LAD2 were used to characterize the activity of the broader family of polymyxins. Octapeptin C4, polymyxin B and colistin produced concentration-dependent calcium mobilization, degranulation, and CCL-2 (MCP-1) release in LAD2 mast cells, with the former being highly potent. CRISPR-Cas9 knockdown of MRGPRX2 in LAD2 cells and a MRGPRX2 inverse agonist caused a significant reduction in calcium mobilization, degranulation, and CCL-2 release, demonstrating dependency on MRGPRX2 expression. In contrast, polymyxin nonapeptides were far less potent calcium mobilisers and failed to induce functional degranulation in LAD2 cells. Our results confirm that activation of mast cells induced by polymyxin-related antibiotics is MRGPRX2-dependent and reveal that octapeptin C4 might be more liable, whilst nonapeptides are less liable, to trigger immediate hypersensitivity reactions clinically. The mechanism underpinning the difference in MRGPRX2 activation between polymyxin-related antibiotics is important to better understand as it may help design new, safer polymyxins and guide the optimal clinical use of existing polymyxin drugs.
ABSTRACT
Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 µg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 µg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.
Subject(s)
Annexin A2/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Plasminogen/metabolism , Respiratory System/metabolism , Animals , Annexin A2/deficiency , Annexin A2/genetics , Bronchoalveolar Lavage Fluid/immunology , Cells, Cultured , Cytokines/genetics , Disease Models, Animal , Fibrinolysin/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth/immunology , Myocytes, Smooth Muscle/immunology , Phosphatidylinositol 3-Kinase/metabolism , Pneumonia/immunology , Pneumonia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Respiratory System/immunology , Signal Transduction , Time Factors , Urokinase-Type Plasminogen Activator/metabolism , alpha-2-Antiplasmin/metabolismABSTRACT
The tachykinin neuropeptide substance P (SP) is the canonical agonist peptide for the neurokinin 1 receptor (NK1 R). More recently, it has also been shown to activate the Mas-related G protein-coupled receptor X2 (MRGPRX2) receptor on mast cells (MCs), triggering degranulation and release of inflammatory mediators. SP undergoes rapid C-terminal truncation in vivo by a number of proteases to generate the metabolites SP(1-9)-COOH and in particular SP(1-7)-COOH. While the C terminus of SP is critical for NK1 R activation, studies have shown that the peptide polycationic N terminus is key for MRGPRX2 and mast cell activation. The study thus aimed to determine if the C-terminally truncated metabolites of SP, SP(1-9)-COOH, and SP(1-7)-COOH retained stimulatory activity at MRGPRX2. SP, SP(1-9)-COOH, and SP(1-7)-COOH were synthesized and tested on HEK293 cells expressing NK1 R or MRGPRX2, and LAD2 human mast cells, to determine the activity of SP and its metabolites in Ca2+ mobilization, degranulation, and cytokine assays. As expected from prior studies, both C-terminally truncated SP metabolites had essentially no activity at NK1 R, even at very high concentrations. In contrast, the in vivo metabolite of SP, SP(1-9)-COOH retained ability to activate MRGPRX2 across all parameters tested, albeit with reduced potency compared to intact SP. SP(1-7)-COOH did not produce any significant MRGRPX2 activation. Our results suggest that the SP metabolite, SP(1-9)-COOH, may play a regulatory role through the activation of MRGPRX2. However, given the relatively low potency of both SP and SP(1-9)-COOH at MRGPRX2, additional work is needed to better understand the biological importance of this expanded SP/MRGPRX2 pathway.
Subject(s)
Mast Cells , Receptors, Neuropeptide , Cell Degranulation , HEK293 Cells , Humans , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Substance P/metabolism , Substance P/pharmacologyABSTRACT
IgE-Fc receptors and IgG-Fc receptors are expressed on hematopoietic cells, but some evidence suggests that these receptors are also found on nonhematopoietic cells, including human airway smooth muscle (hASM) cells. Our study characterizes the expression of IgE-Fc receptors (FcεRI/CD23) and IgG-Fc receptors (FcγRs-I, -II, and -III) in cultured hASM cells by flow cytometry and Western blotting, and the functional activity of receptors was determined through quantification of cell proliferation and released cytokines. Expression of Fc receptor-linked intracellular signaling proteins and phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 and p38(MAPK) in hASM cells was examined by Western blotting. Expression of FcεRI and CD23 was not detectable in hASM cells. However, FcγRI and FcγRII were shown to be expressed on these cells. Specific antibodies, validated using transfected cell lines, revealed that the inhibitory IgG receptor, FcγRIIb, was the most abundant Fc receptor subtype expressed. Although cross-linking FcγR with heat-aggregated γ globulin (HAGG) did not induce detectable cell stimulation, pretreating hASM cells with HAGG significantly inhibited IL-1α-induced increases in cytokine levels and basic fibroblast growth factor-induced cell proliferation. This inhibitory effect of HAGG was abrogated by preincubation of cells with an anti-FcγRIIb antigen-binding fragment (Fab). Expression of proteins involved in the canonical FcγRIIb inhibitory signaling pathway was established in hASM cells. Pretreatment of hASM cells with HAGG significantly inhibited IL-1α- and basic fibroblast growth factor-induced extracellular signal-regulated kinase 1/2 and p38(MAPK) phosphorylation. This study identifies functional expression of FcγRIIb in hASM cells, with the potential to suppress their remodeling and immunomodulatory roles.
Subject(s)
Bronchi/metabolism , Gene Expression Regulation, Enzymologic , Immunoglobulin G/chemistry , Myocytes, Smooth Muscle/cytology , Receptors, Fc/metabolism , Animals , Cell Proliferation , Cell Separation , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry , Humans , Immune System , MAP Kinase Signaling System , Mast Cells/cytology , Mice , Muscle, Smooth/enzymology , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
Acute anaphylaxis to small molecule drugs is largely considered to be antibody-mediated with immunogloblin E (IgE) and mast cell activation being key. More recently, a role for drug-reactive immunoglobulin G (IgG) with neutrophil activation has also been suggested, at least in reactions to neuromuscular blocking agents (NMBAs). However, the mast cell receptor MRGPRX2 has also been highlighted as a possible triggering mechanism in acute anaphylaxis to many clinically used drugs. Significantly, MRGPRX2 activation is not dependent upon the presence of drug-recognising antibody. Given the reasonable assumption that MRGPRX2 is expressed in all individuals, the corollary of this is that in theory, anybody could respond detrimentally to triggering drugs (recently suggested to be around 20% of a drug-like compound library). But this clearly is not the case, as the incidence of acute drug-induced anaphylaxis is very low. In this mini-review we consider antibody-dependent and -independent mechanisms of mast cell activation by small molecule drugs with a focus on the MRGPRX2 pathway. Moreover, as a juxtaposition to these adverse drug actions, we consider how increased understanding of the role of MRGPRX2 in anaphylaxis is important for future drug development and can complement exploration of this receptor as a drug target in broader clinical settings.
Subject(s)
Anaphylaxis/immunology , Nerve Tissue Proteins/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology , Anaphylaxis/etiology , Anaphylaxis/therapy , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Drug Hypersensitivity/therapy , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/immunology , Drug-Related Side Effects and Adverse Reactions/therapy , Gene Expression , Humans , Mast Cell Activation Disorders/etiology , Mast Cell Activation Disorders/immunology , Mast Cell Activation Disorders/therapy , Mast Cells/drug effects , Mast Cells/immunology , Models, Immunological , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/geneticsABSTRACT
FcγR activity underpins the role of antibodies in both protective immunity and auto-immunity and importantly, the therapeutic activity of many monoclonal antibody therapies. Some monoclonal anti-FcγR antibodies activate their receptors, but the properties required for cell activation are not well defined. Here we examined activation of the most widely expressed human FcγR; FcγRIIa, by two non-blocking, mAbs, 8.26 and 8.2. Crosslinking of FcγRIIa by the mAb F(ab')2 regions alone was insufficient for activation, indicating activation also required receptor engagement by the Fc region. Similarly, when mutant receptors were inactivated in the Fc binding site, so that intact mAb was only able to engage receptors via its two Fab regions, again activation did not occur. Mutation of FcγRIIa in the epitope recognized by the agonist mAbs, completely abrogated the activity of mAb 8.26, but mAb 8.2 activity was only partially inhibited indicating differences in receptor recognition by these mAbs. FcγRIIa inactivated in the Fc binding site was next co-expressed with the FcγRIIa mutated in the epitope recognized by the Fab so that each mAb 8.26 molecule can contribute only three interactions, each with separate receptors, one via the Fc and two via the Fab regions. When the Fab and Fc binding were thus segregated onto different receptor molecules receptor activation by intact mAb did not occur. Thus, receptor activation requires mAb 8.26 Fab and Fc interaction simultaneously with the same receptor molecules. Establishing the molecular nature of FcγR engagement required for cell activation may inform the optimal design of therapeutic mAbs.
Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Immunoglobulin Fc Fragments/metabolism , Receptors, IgG/agonists , Receptors, IgG/metabolism , Binding Sites , Epitopes/genetics , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Mutation , Phosphorylation , Platelet Activation , Protein Binding , Receptors, Fc , Receptors, IgG/geneticsABSTRACT
FcγRIIa is an activating FcγR, unique to humans and non-human primates. It induces antibody-dependent proinflammatory responses and exists predominantly as FcγRIIa1. A unique splice variant, we designated FcγRIIa3, has been reported to be associated with anaphylactic reactions to intravenous immunoglobulins (IVIg) therapy. We aim to define the functional consequences of this FcγRIIa variant associated with adverse responses to IVIg therapy and evaluate the frequency of associated SNPs. FcγRIIa forms from macaque and human PBMCs were investigated for IgG-subclass specificity, biochemistry, membrane localization, and functional activity. Disease-associated SNPs were analyzed by sequencing genomic DNA from 224 individuals with immunodeficiency or autoimmune disease. FcγRIIa3 was identified in macaque and human PBMC. The FcγRIIa3 is distinguished from the canonical FcγRIIa1 by a unique 19-amino acid cytoplasmic insertion and these two FcγRIIa forms responded distinctly to antibody ligation. Whereas FcγRIIa1 was rapidly internalized, FcγRIIa3 was retained longer at the membrane, inducing greater calcium mobilization and cell degranulation. Four FCGR2A SNPs were identified including the previously reported intronic SNP associated with anaphylaxis, but in only 1 of 224 individuals. The unique cytoplasmic element of FcγRIIa3 delays internalization and is associated with enhanced cellular activation. The frequency of the immunodeficiency-associated SNP varies between disease populations but interestingly occurred at a lower frequency than previously reported. None-the-less enhanced FcγRIIa3 function may promote a proinflammatory environment and predispose to pathological inflammatory responses.
Subject(s)
Anaphylaxis/genetics , Anaphylaxis/metabolism , Receptors, IgG/genetics , Receptors, IgG/metabolism , Anaphylaxis/diagnosis , Anaphylaxis/immunology , Animals , Biomarkers , Cell Degranulation/immunology , Disease Susceptibility , Fluorescent Antibody Technique , Gene Expression , Genetic Loci , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macaca , Mast Cells/immunology , Mast Cells/metabolism , Phenotype , Polymorphism, Single Nucleotide , Protein Binding , Protein Isoforms , Sequence Analysis, DNAABSTRACT
Previous investigators have reported that deletion of the protein tyrosine kinase Lyn alters mast cell (MC) signaling responses but does not affect or reduces the cytokine-mediated proliferation of mouse bone marrow-derived MC (BMMC) precursors and of mature MC. We observed that Lyn-deficient mice have more peritoneal MC than wild-type (WT) mice. Studies to explore this unexpected result showed that Lyn(-/-) BM cells expand faster than WT cells in response to interleukin (IL)-3 and stem-cell factor over the 4-5 weeks required to produce a >95% pure population of granular, receptor with high affinity for immunoglobulin E-positive BMMC. Furthermore, differentiated Lyn(-/-) BMMC continue to proliferate more rapidly than WT BMMC and undergo less apoptosis in response to cytokine withdrawal. Additionally, Lyn(-/-) BMMC support greater IL-3-mediated phosphorylation of the prosurvival kinase, Akt, and the proliferative kinase, extracellular-regulated kinase 1/2. These results identify Lyn as a negative regulator of murine MC survival and proliferation.
Subject(s)
Mast Cells/cytology , Mast Cells/immunology , src-Family Kinases/physiology , Animals , Bone Marrow Cells/cytology , Caspases/metabolism , Cell Cycle , Cell Differentiation/physiology , Cell Division/physiology , Growth Substances/pharmacology , Interleukin-3/pharmacology , Kinetics , Mast Cells/drug effects , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , src-Family Kinases/deficiency , src-Family Kinases/geneticsABSTRACT
Eosinophils play important roles in limiting parasitic infection and in allergic inflammation in the asthmatic airways. Activation of eosinophils by diverse stimuli, including prostaglandin D(2) (PD(2) ), leads to leukotriene C(4) (LTC(4) ) synthesis that contributes to the expulsion of parasites and to epithelial injury in allergic inflammation. Mesquita-Santos et al. in this issue of the journal describe a collaboration between the two PGD(2) receptors, DP(1) and DP(2) [also known as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 lymphocytes)] that is required to trigger LTC(4) synthesis. DP(1) receptors coupled to G(αs) increase adenylate cyclase activity and cAMP/ protein kinase A-dependent formation of lipid bodies, and DP(2) receptors coupled to G(αi) increase calcium. Each of these signals is required for LTC(4) production. These observations lead to consideration of the effects of other stimuli for eosinophil cAMP, such as the ß(2) -adrenoceptor agonists, which inhibit rather than enhance LTC(4) production.
Subject(s)
Eosinophils/metabolism , Leukotriene C4/biosynthesis , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Adenylyl Cyclases/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Prostaglandin D2/metabolismABSTRACT
The emergence of the novel prion diseases bovine spongiform encephalopathy (BSE) and, subsequently, variant Creutzfeldt-Jakob disease (vCJD) in epidemic forms has attracted much scientific attention. The oral transmission of these disorders, the causative relationship of vCJD to BSE and the resistance of the transmissible agents in both disorders to conventional forms of decontamination has caused great public health concern. The size of the still emerging vCJD epidemic is thankfully much lower than some early published estimates. This paper reviews current knowledge of the factors that influence the development of vCJD: the properties of the infectious agent; the route of inoculation and individual susceptibility factors. The current epidemiological data are reviewed, along with relevant animal transmission studies. In terms of genetic susceptibility, the best characterised is the common single nucleotide polymorphism at codon 129 of prion protein gene. Current biomarkers and future areas of research will be discussed. These issues are important in informing precautionary measures and the ongoing monitoring of vCJD.
ABSTRACT
Mast cells play important roles in allergic and inflammatory diseases. Efforts to better understand human mast cell activation and develop novel inhibitory agents have been hampered by the lack of suitable human mast cell lines. The HMC-1 mast cell line has been extensively used, but lacks native expression of the human high-affinity IgE receptor FcεRI limiting its applications. We have stably transfected HMC-1 cells with the IgE-binding α-subunit of FcεRI to generate HMCα cells that are antigen-responsive. We have used flow cytometry, cell signaling assays, pharmacological pathway inhibitors and cell functional assays to characterize the properties of HMCα cells. IgE/antigen responses were compared with those of the adenosine receptor agonist NECA. Surface expression of FcεRI in HMCα cells was demonstrated and was enhanced by prior sensitization with IgE. Activation of HMCα cells with IgE/antigen did not produce degranulation, but did lead to release of numerous cytokines. Whilst there was no measurable increase of intracellular Ca(2+) or marked general changes in protein tyrosine phosphorylation, IgE/antigen stimulation of HMCα cells enhanced phosphorylation of p38(MAPK) and Erk. Inhibitors of these pathways, as well as the src kinase inhibitor PP2, attenuated IgE/antigen-induced cytokine release. In summary, we have generated and characterized HMCα cells and show that they are a useful and relevant human mast cell model to examine FcεRI stabilization, signaling and mediator release. We envisage that HMCα cells will have utility in understanding the importance of mast cells in human allergic disease and in assessing the activity of novel anti-allergic compounds.
Subject(s)
Antigens/immunology , Cytokines/biosynthesis , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Mast Cells/immunology , Receptors, IgE/immunology , Animals , Antigens/metabolism , Cell Degranulation/drug effects , Cell Line , Cytokines/genetics , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mast Cells/metabolism , Pyrimidines/pharmacology , Rats , Receptors, IgE/genetics , Receptors, IgE/metabolism , Signal Transduction/drug effects , Transfection , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolismABSTRACT
Soluble fragments of the alpha-chain of FcepsilonRI, the high-affinity receptor for IgE, compete with membrane-bound receptors for IgE and may thus provide a means to combat allergic responses. Mutagenesis within FcepsilonRIalpha is used in this study, in conjunction with the crystal structure of the FcepsilonRIalpha/IgE complex, to define the relative importance of specific residues within human FcepsilonRIalpha for IgE binding. We have also compared the effects of these mutants on binding to both human and mouse IgE, with a view to evaluating the mouse as an appropriate model for the analysis of future agents designed to mimic the human FcepsilonRIalpha and attenuate allergic disease. Three residues within the C-C' region of the FcepsilonRIalpha2 domain and two residues within the alpha2 proximal loops of the alpha1 domain were selected for mutagenesis and tested in binding assays with human and mouse IgE. All three alpha2 mutations (K117D, W130A, and Y131A) reduced the affinity of human IgE binding to different extents, but K117D had a far more pronounced effect on mouse IgE binding, and although Y131A had little effect, W130A modestly enhanced binding to mouse IgE. The mutations in alpha1 (R15A and F17A) diminished binding to both human and mouse IgE, with these effects most likely caused by disruption of the alpha1/alpha2 interface. Our results demonstrate that the effects of mutations in human FcepsilonRIalpha on mouse IgE binding, and hence the inhibitory properties of human receptor-based peptides assayed in rodent models of allergy, may not necessarily reflect their activity in a human IgE-based system.