Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neurobiol Dis ; 199: 106562, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876322

ABSTRACT

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.

2.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502103

ABSTRACT

Cell migration is critical for brain development and linked to several neurodevelopmental disorders, including schizophrenia. We have shown previously that cell migration is dysregulated in olfactory neural stem cells from people with schizophrenia. Although they moved faster than control cells on plastic substrates, patient cells were insensitive to regulation by extracellular matrix proteins, which increase the speeds of control cells. As well as speed, cell migration is also described by directional persistence, the straightness of movement. The aim of this study was to determine whether directional persistence is dysregulated in schizophrenia patient cells and whether it is modified on extracellular matrix proteins. Directional persistence in patient-derived and control-derived olfactory cells was quantified from automated live-cell imaging of migrating cells. On plastic substrates, patient cells were more persistent than control cells, with straighter trajectories and smaller turn angles. On most extracellular matrix proteins, persistence increased in patient and control cells in a concentration-dependent manner, but patient cells remained more persistent. Patient cells therefore have a subtle but complex phenotype in migration speed and persistence on most extracellular matrix protein substrates compared to control cells. If present in the developing brain, this could lead to altered brain development in schizophrenia.


Subject(s)
Cell Movement , Olfactory Receptor Neurons/physiology , Schizophrenia/pathology , Cell Tracking , Cells, Cultured , Extracellular Matrix Proteins/metabolism , Humans , Olfactory Receptor Neurons/metabolism , Single-Cell Analysis
3.
Anal Chem ; 92(16): 11204-11212, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32639142

ABSTRACT

Acetylation of α-tubulin at conserved lysine 40 (K40) amino acid residue regulates microtubule dynamics and controls a wide range of cellular activities. Dysregulated microtubule dynamics characterized by differential α-tubulin acetylation is a hallmark of cancer, neurodegeneration, and other complex disorders. Hence, accurate quantitation of α-tubulin acetylation is required in human disease and animal model studies. We developed a novel antibody-free proteomics assay to measure α-tubulin acetylation targeting protease AspN-generated peptides harboring K40 site. Using the synthetic unmodified and acetylated stable isotope labeled peptides DKTIGGG and DKTIGGGD, we demonstrate assay linearity across 4 log magnitude and reproducibility of <10% coefficient of variation. The assay accuracy was validated by titration of 10-80% mixture of acetylated/nonacetylated α-tubulin peptides in the background of human olfactory neurosphere-derived stem (ONS) cell matrix. Furthermore, in agreement with antibody-based high content microscopy analysis, the targeted proteomics assay reported an induction of α-tubulin K40 acetylation upon Trichostatin A stimulation of ONS cells. Independently, we found 35.99% and 16.11% α-tubulin acetylation for mouse spinal cord and brain homogenate tissue, respectively, as measured by our assay. In conclusion, this simple, antibody-free proteomics assay enables quantitation of α-tubulin acetylation, and is applicable across various fields of biology and medicine.


Subject(s)
Protein Processing, Post-Translational , Proteomics/methods , Tubulin/analysis , Acetylation , Amino Acid Sequence , Animals , Humans , Ion Mobility Spectrometry , Lysine/chemistry , Mice, Inbred C57BL , Nuclear Magnetic Resonance, Biomolecular , Stem Cells , Tubulin/chemistry , Tubulin/metabolism
4.
Part Fibre Toxicol ; 17(1): 18, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32487172

ABSTRACT

BACKGROUND: The adverse effects of air pollutants including particulate matter (PM) on the central nervous system is increasingly reported by epidemiological, animal and post-mortem studies in the last decade. Oxidative stress and inflammation are key consequences of exposure to PM although little is known of the exact mechanism. The association of PM exposure with deteriorating brain health is speculated to be driven by PM entry via the olfactory system. How air pollutants affect this key entry site remains elusive. In this study, we investigated effects of urban size-segregated PM on a novel cellular model: primary human olfactory mucosal (hOM) cells. RESULTS: Metabolic activity was reduced following 24-h exposure to PM without evident signs of toxicity. Results from cytometric bead array suggested a mild inflammatory response to PM exposure. We observed increased oxidative stress and caspase-3/7 activity as well as perturbed mitochondrial membrane potential in PM-exposed cells. Mitochondrial dysfunction was further verified by a decrease in mitochondria-dependent respiration. Transient suppression of the mitochondria-targeted gene, neuronal pentraxin 1 (NPTX1), was carried out, after being identified to be up-regulated in PM2.5-1 treated cells via RNA sequencing. Suppression of NPTX1 in cells exposed to PM did not restore mitochondrial defects resulting from PM exposure. In contrast, PM-induced adverse effects were magnified in the absence of NPTX1, indicating a critical role of this protein in protection against PM effects in hOM cells. CONCLUSION: Key mitochondrial functions were perturbed by urban PM exposure in a physiologically relevant cellular model via a mechanism involving NPTX1. In addition, inflammatory response and early signs of apoptosis accompanied mitochondrial dysfunction during exposure to PM. Findings from this study contribute to increased understanding of harmful PM effects on human health and may provide information to support mitigation strategies targeted at air pollution.


Subject(s)
Air Pollutants/toxicity , Mitochondria/drug effects , Olfactory Mucosa/drug effects , Oxidative Stress/drug effects , Particulate Matter/toxicity , Aged , Animals , Apoptosis/drug effects , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Cell Culture Techniques , Cells, Cultured , Cities , Cytokines/metabolism , Humans , Inflammation , Male , Membrane Potential, Mitochondrial/drug effects , Middle Aged , Mitochondria/immunology , Mitochondria/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Particle Size , Transcriptome/drug effects , Urbanization
5.
Mol Cell Neurosci ; 80: 111-122, 2017 04.
Article in English | MEDLINE | ID: mdl-28286248

ABSTRACT

Schizophrenia is a highly heritable psychiatric disorder linked to a large number of risk genes. The function of these genes in disease etiology is not fully understood but pathway analyses of genomic data suggest developmental dysregulation of cellular processes such as neuronal migration and axon guidance. Previous studies of patient-derived olfactory cells show them to be more motile than control-derived cells when grown on a fibronectin substrate, motility that is dependent on focal adhesion kinase signaling. The aim of this study was to investigate whether schizophrenia patient-derived cells are responsive to other extracellular matrix (ECM) proteins that bind integrin receptors. Olfactory neurosphere-derived cells from nine patients and nine matched controls were grown on ECM protein substrates at increasing concentrations and their movement was tracked for 24h using automated high-throughput imaging. Control-derived cells increased their motility as the ECM substrate concentration increased, whereas patient-derived cell motility was little affected by ECM proteins. Patient and control cells had appropriate integrin receptors for these ECM substrates and detected them as shown by increases in focal adhesion number and size in response to ECM proteins, which also induced changes in cell morphology and cytoskeleton. These observations indicate that patient cells failed to translate the detection of ECM proteins into appropriate changes in cell motility. In a sense, patient cells act like a moving car whose accelerator is jammed, moving at the same speed without regard to the external environment. This focuses attention on cell motility regulation rather than speed as key to impairment of neuronal migration in the developing brain in schizophrenia.


Subject(s)
Cell Movement/physiology , Extracellular Matrix/metabolism , Olfactory Receptor Neurons/physiology , Schizophrenia/pathology , Adolescent , Adult , Case-Control Studies , Cell Line/drug effects , Cell Movement/drug effects , Cells, Cultured , Cohort Studies , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dose-Response Relationship, Drug , Extracellular Matrix Proteins/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Male , Middle Aged , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/drug effects , Young Adult
6.
Hum Mol Genet ; 23(11): 2802-15, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24399444

ABSTRACT

Human ATP13A2 (PARK9), a lysosomal type 5 P-type ATPase, has been associated with autosomal recessive early-onset Parkinson's disease (PD). ATP13A2 encodes a protein that is highly expressed in neurons and is predicted to function as a cation pump, although the substrate specificity remains unclear. Accumulation of zinc and mitochondrial dysfunction are established aetiological factors that contribute to PD; however, their underlying molecular mechanisms are largely unknown. Using patient-derived human olfactory neurosphere cultures, which harbour loss-of-function mutations in both alleles of ATP13A2, we identified a low intracellular free zinc ion concentration ([Zn(2+)]i), altered expression of zinc transporters and impaired sequestration of Zn(2+) into autophagy-lysosomal pathway-associated vesicles, indicating that zinc dyshomeostasis occurs in the setting of ATP13A2 deficiency. Pharmacological treatments that increased [Zn(2+)]i also induced the production of reactive oxygen species and aggravation of mitochondrial abnormalities that gave rise to mitochondrial depolarization, fragmentation and cell death due to ATP depletion. The toxic effect of Zn(2+) was blocked by ATP13A2 overexpression, Zn(2+) chelation, antioxidant treatment and promotion of mitochondrial fusion. Taken together, these results indicate that human ATP13A2 deficiency results in zinc dyshomeostasis and mitochondrial dysfunction. Our data provide insights into the molecular mechanisms of zinc dyshomeostasis in PD and its contribution to mitochondrial dysfunction with ATP13A2 as a molecular link between the two distinctive aetiological factors of PD.


Subject(s)
Mitochondria/metabolism , Parkinsonian Disorders/metabolism , Proton-Translocating ATPases/deficiency , Zinc/metabolism , Autophagy , Biological Transport , Homeostasis , Humans , Mutation , Parkinsonian Disorders/enzymology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/physiopathology , Proton-Translocating ATPases/genetics , Reactive Oxygen Species/metabolism
7.
J Nat Prod ; 79(8): 1982-9, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27447544

ABSTRACT

Harnessing the inherent biological relevance of natural products requires a method for the recognition of biological effects that may subsequently lead to the discovery of particular targets. An unbiased multidimensional profiling method was used to examine the activities of natural products on primary cells derived from a Parkinson's disease patient. The biological signature of 482 natural products was examined using multiparametric analysis to investigate known cellular pathways and organelles implicated in Parkinson's disease such as mitochondria, lysosomes, endosomes, apoptosis, and autophagy. By targeting several cell components simultaneously the chance of finding a phenotype was increased. The phenotypes were then clustered using an uncentered correlation. The multidimensional phenotypic screening showed that all natural products, in our screening set, were biologically relevant compounds as determined by an observed phenotypic effect. Multidimensional phenotypic screening can predict the cellular function and subcellular site of activity of new compounds, while the cluster analysis provides correlation with compounds with known mechanisms of action. This study reinforces the value of natural products as biologically relevant compounds.


Subject(s)
Biological Products/pharmacology , Parkinson Disease , Small Molecule Libraries , Apoptosis/drug effects , Humans , Molecular Structure
8.
Clin Microbiol Rev ; 27(4): 691-726, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25278572

ABSTRACT

The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.


Subject(s)
Central Nervous System Infections/microbiology , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/microbiology , Central Nervous System Infections/immunology , Central Nervous System Infections/transmission , Humans , Immunologic Surveillance , Nasal Cavity/microbiology , Olfactory Nerve/microbiology , Trigeminal Nerve/microbiology
9.
Hum Mol Genet ; 22(12): 2495-509, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23474819

ABSTRACT

The autosomal recessive disorder ataxia-telangiectasia (A-T) is characterized by genome instability, cancer predisposition and neurodegeneration. Although the role of ataxia-telangiectasia mutated (ATM) protein, the protein defective in this syndrome, is well described in the response to DNA damage, its role in protecting the nervous system is less clear. We describe the establishment and characterization of patient-specific stem cells that have the potential to address this shortcoming. Olfactory neurosphere (ONS)-derived cells were generated from A-T patients, which expressed stem cell markers and exhibited A-T molecular and cellular characteristics that included hypersensitivity to radiation, defective radiation-induced signaling and cell cycle checkpoint defects. Introduction of full-length ATM cDNA into these cells corrected defects in the A-T cellular phenotype. Gene expression profiling and pathway analysis revealed defects in multiple cell signaling pathways associated with ATM function, with cell cycle, cell death and DNA damage response pathways being the most significantly dysregulated. A-T ONS cells were also capable of differentiating into neural progenitors, but they were defective in neurite formation, number of neurites and length of these neurites. Thus, ONS cells are a patient-derived neural stem cell model that recapitulate the phenotype of A-T, do not require genetic reprogramming, have the capacity to differentiate into neurons and have potential to delineate the neurological defect in these patients.


Subject(s)
Ataxia Telangiectasia/physiopathology , Neurons/cytology , Olfactory Pathways/cytology , Stem Cells/cytology , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Differentiation , Cells, Cultured , Child , Female , Humans , Infant , Male , Models, Biological , Mucous Membrane , Neurons/metabolism , Neurons/pathology , Phenotype , Stem Cells/metabolism , Stem Cells/pathology
10.
PLoS Genet ; 7(8): e1002207, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21852951

ABSTRACT

Gene expression analysis has become a ubiquitous tool for studying a wide range of human diseases. In a typical analysis we compare distinct phenotypic groups and attempt to identify genes that are, on average, significantly different between them. Here we describe an innovative approach to the analysis of gene expression data, one that identifies differences in expression variance between groups as an informative metric of the group phenotype. We find that genes with different expression variance profiles are not randomly distributed across cell signaling networks. Genes with low-expression variance, or higher constraint, are significantly more connected to other network members and tend to function as core members of signal transduction pathways. Genes with higher expression variance have fewer network connections and also tend to sit on the periphery of the cell. Using neural stem cells derived from patients suffering from Schizophrenia (SZ), Parkinson's disease (PD), and a healthy control group, we find marked differences in expression variance in cell signaling pathways that shed new light on potential mechanisms associated with these diverse neurological disorders. In particular, we find that expression variance of core networks in the SZ patient group was considerably constrained, while in contrast the PD patient group demonstrated much greater variance than expected. One hypothesis is that diminished variance in SZ patients corresponds to an increased degree of constraint in these pathways and a corresponding reduction in robustness of the stem cell networks. These results underscore the role that variation plays in biological systems and suggest that analysis of expression variance is far more important in disease than previously recognized. Furthermore, modeling patterns of variability in gene expression could fundamentally alter the way in which we think about how cellular networks are affected by disease processes.


Subject(s)
Gene Expression Profiling , Genetic Variation , Parkinson Disease/genetics , Schizophrenia/genetics , Signal Transduction/genetics , Analysis of Variance , Case-Control Studies , Fibroblasts/metabolism , Genome-Wide Association Study , Humans , Neural Stem Cells/metabolism , Parkinson Disease/pathology , Protein Interaction Maps/genetics , Schizophrenia/pathology
11.
N Engl J Med ; 363(14): 1335-40, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20879882

ABSTRACT

De novo mutations are a cause of sporadic disease, but little is known about the developmental timing of such mutations. We studied concordant and discordant monozygous twins with de novo mutations in the sodium channel α1 subunit gene (SCN1A) causing Dravet's syndrome, a severe epileptic encephalopathy. On the basis of our findings and the literature on mosaic cases, we conclude that de novo mutations in SCN1A may occur at any time, from the premorula stage of the embryo (causing disease in the subject) to adulthood (with mutations in the germ-line cells of parents causing disease in offspring).


Subject(s)
Epilepsies, Myoclonic/genetics , Mutation , Nerve Tissue Proteins/genetics , Sodium Channels/genetics , Twins, Monozygotic/genetics , Adult , Female , Frameshift Mutation , Genetic Markers , Germ-Line Mutation , Humans , Infant , Mutagenesis , NAV1.1 Voltage-Gated Sodium Channel , Polymerase Chain Reaction , Sequence Analysis, DNA , Time Factors
12.
Stem Cells ; 30(11): 2361-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22961669

ABSTRACT

Traditional models of brain diseases have had limited success in driving candidate drugs into successful clinical translation. This has resulted in large international pharmaceutical companies moving out of neuroscience research. Cells are not brains, obviously, but new patient-derived stem models have the potential to elucidate cell biological aspects of brain diseases that are not present in worm, fly, or rodent models, the work horses of disease investigations and drug discovery. Neural stem cells are present in the olfactory mucosa, the organ of smell in the nose. Patient-derived olfactory mucosa has demonstrated disease-associated differences in a variety of brain diseases and recently olfactory mucosa stem cells have been generated from patients with schizophrenia, Parkinson's disease, and familial dysautonomia. By comparison with cells from healthy controls, patient-derived olfactory mucosa stem cells show disease-specific alterations in gene expression and cell functions including: a shorter cell cycle and faster proliferation in schizophrenia, oxidative stress in Parkinson's disease, and altered cell migration in familial dysautonomia. Olfactory stem cell cultures thus reveal patient-control differences, even in complex genetic diseases such as schizophrenia and Parkinson's disease, indicating that multiple genes of small effect can converge on shared cell signaling pathways to present as a disease-specific cellular phenotype. Olfactory mucosa stem cells can be maintained in homogeneous cultures that allow robust and repeatable multiwell assays suitable for screening libraries of drug candidate molecules.


Subject(s)
Brain Diseases/pathology , Neural Stem Cells/pathology , Olfactory Mucosa/pathology , Adult Stem Cells/metabolism , Animals , Brain Diseases/drug therapy , Brain Diseases/metabolism , Cell Cycle , Cells, Cultured , Drug Evaluation, Preclinical/methods , Gene Expression Regulation , Humans , Neural Stem Cells/metabolism , Oxidative Stress
13.
Part Fibre Toxicol ; 10(1): 54, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24144420

ABSTRACT

BACKGROUND: Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles. METHODS: Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium. RESULTS: ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees. CONCLUSIONS: The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa.


Subject(s)
Metal Nanoparticles , Olfactory Mucosa/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Zinc Oxide/chemistry , Culture Media , Cytokines/metabolism , Gene Expression Profiling , Humans , Microscopy, Electron, Transmission , Olfactory Mucosa/cytology , Oligonucleotide Array Sequence Analysis , Surface Properties , Zinc Oxide/pharmacology
14.
Front Neurosci ; 17: 1073516, 2023.
Article in English | MEDLINE | ID: mdl-37144097

ABSTRACT

HSP-SPAST is the most common form of hereditary spastic paraplegia (HSP), a neurodegenerative disease causing lower limb spasticity. Previous studies using HSP-SPAST patient-derived induced pluripotent stem cell cortical neurons have shown that patient neurons have reduced levels of acetylated α-tubulin, a form of stabilized microtubules, leading to a chain of downstream effects eventuating in increased vulnerability to axonal degeneration. Noscapine treatment rescued these downstream effects by restoring the levels of acetylated α-tubulin in patient neurons. Here we show that HSP-SPAST patient non-neuronal cells, peripheral blood mononuclear cells (PBMCs), also have the disease-associated effect of reduced levels of acetylated α-tubulin. Evaluation of multiple PBMC subtypes showed that patient T cell lymphocytes had reduced levels of acetylated α-tubulin. T cells make up to 80% of all PBMCs and likely contributed to the effect of reduced acetylated α-tubulin levels seen in overall PBMCs. We further showed that mouse administered orally with increasing concentrations of noscapine exhibited a dose-dependent increase of noscapine levels and acetylated α-tubulin in the brain. A similar effect of noscapine treatment is anticipated in HSP-SPAST patients. To measure acetylated α-tubulin levels, we used a homogeneous time resolved fluorescence technology-based assay. This assay was sensitive to noscapine-induced changes in acetylated α-tubulin levels in multiple sample types. The assay is high throughput and uses nano-molar protein concentrations, making it an ideal assay for evaluation of noscapine-induced changes in acetylated α-tubulin levels. This study shows that HSP-SPAST patient PBMCs exhibit disease-associated effects. This finding can help expedite the drug discovery and testing process.

15.
Glia ; 60(2): 322-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22065423

ABSTRACT

Olfactory ensheathing cells (OECs) support the regeneration of olfactory sensory neurons throughout life, however, it remains unclear how OECs respond to a major injury. We have examined the proliferation and migration of OECs following unilateral bulbectomy in postnatal mice. S100ß-DsRed and OMP-ZsGreen transgenic mice were used to visualize OECs and olfactory neurons, respectively, and we used the thymidine analogue ethynyl deoxyuridine (EdU) to identify cells that were proliferating at the time of administration. Following unilateral bulbectomy, there was an initial phase of OEC proliferation throughout the olfactory pathway with a peak of proliferation occurring 2 to 7 days after the injury. A second phase of proliferation also occurred in which precursors localized within the olfactory mucosa divided to replenish the OEC population. We then tracked the positions of OECs that had proliferated and found that there was a progressive increase in OECs in the cavity for at least 12 to 16 days after injury which could not be accounted for solely by local proliferation of OECs within the cavity. These results suggest that OECs migrated from the peripheral olfactory nerve to populate the mass of cells that filled cavity left by bulbectomy. Our results demonstrate that following injury to the olfactory nervous system, the OEC population is replenished by migration of cells that arise from both local proliferation of OECs throughout the olfactory nerve pathway as well as from precursor cells in the olfactory mucosa.


Subject(s)
Cell Differentiation/physiology , Nerve Regeneration/physiology , Olfactory Bulb/injuries , Olfactory Mucosa/physiology , Olfactory Nerve/physiology , Animals , Animals, Newborn , Biomarkers/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neuroglia/cytology , Neuroglia/pathology , Neuroglia/physiology , Olfactory Bulb/pathology , Olfactory Bulb/surgery , Olfactory Marker Protein/genetics , Olfactory Mucosa/cytology , Olfactory Mucosa/pathology , Olfactory Nerve/cytology , Olfactory Nerve/pathology , S100 Proteins/genetics
16.
Neurosignals ; 20(3): 147-58, 2012.
Article in English | MEDLINE | ID: mdl-22456085

ABSTRACT

The primary olfactory nervous system is unique in that it continuously renews itself and regenerates after injury. These properties are attributed to the presence of olfactory glia, termed olfactory ensheathing cells (OECs). Evidence is now emerging that individual OEC populations exist with distinct anatomical localisations and physiological properties, but their differential roles have not been determined. Unlike other glia, OECs can migrate from the periphery into the central nervous system, and organised OEC migration can enhance axonal extension after injury. Despite this, the mechanisms regulating OEC migration are largely unknown. Here, we provide an overview of the roles of OECs in development and adulthood. We review the latest research describing the differences between individual OEC subpopulations and discuss potential regulatory mechanisms for OEC guidance and migration. Using advanced time lapse techniques, we have obtained novel insights into how OECs behave in a complex multicellular environment which we discuss here with particular focus on cell-cell interactions. Significantly, transplantation of OECs constitutes a promising novel therapy for nerve injuries, but results are highly variable and the method needs improvement. We here review the roles of transplanted OECs in neural repair of damaged neuronal tracts distinct from the primary olfactory nervous system.


Subject(s)
Cell Movement/physiology , Nerve Regeneration/physiology , Neuroglia/cytology , Neurons/cytology , Olfactory Pathways/cytology , Animals , Neuroglia/physiology , Neurons/physiology , Olfactory Pathways/physiology
17.
Exp Cell Res ; 317(7): 1049-59, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21199649

ABSTRACT

Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.


Subject(s)
Cerebral Ventricles/cytology , Glioblastoma/pathology , Neoplastic Stem Cells/cytology , Spheroids, Cellular/cytology , Stem Cells/cytology , Adult , Animals , Biomarkers, Tumor/metabolism , Glioblastoma/ultrastructure , Humans , Neoplastic Stem Cells/physiology , Rats , Spheroids, Cellular/physiology , Spheroids, Cellular/ultrastructure , Stem Cells/physiology , Tumor Cells, Cultured
18.
Cell Mol Life Sci ; 68(19): 3233-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21318262

ABSTRACT

Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.


Subject(s)
Axons/physiology , Cell Movement/physiology , Olfactory Mucosa/cytology , Animals , Axons/metabolism , Cell Culture Techniques , Luminescent Proteins/analysis , Mice , Mice, Transgenic , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Olfactory Bulb/physiology , Olfactory Mucosa/metabolism , Pseudopodia/physiology
19.
Mol Cell Neurosci ; 48(1): 9-19, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21699983

ABSTRACT

Cell surface carbohydrates define subpopulations of primary olfactory neurons whose axons terminate in select glomeruli in the olfactory bulb. The combination of carbohydrates present on axon subpopulations has been proposed to confer a unique identity that contributes to the establishment of the olfactory topographic map. We have identified a novel subpopulation of primary olfactory neurons in mice that express blood group carbohydrates with GalNAc-ß1,4[NeuAcα 2,3]Galß1 residues recognised by the CT1 antibody. The CT1 carbohydrate has been shown to modulate adhesion of nerve terminals to the extracellular matrix and to synaptic proteins. The axons of the CT1-positive primary olfactory neurons terminate in a subpopulation of glomeruli in the olfactory bulb. Four lines of evidence support the view that CT1 glomeruli are topographically fixed. First, CT1 glomeruli were restricted predominantly to the dorsomedial olfactory bulb and were absent from large patches of the ventrolateral bulb. Second, similar distributions were observed for CT1 glomeruli on both the left and right olfactory bulbs of each animal, and between animals. Third, CT1 glomeruli were typically present as small clusters of 2-4 glomeruli. Fourth, a single CT1 glomerulus was always apposed to the glomeruli innervated by axons expressing the M72 odorant receptor. We also show that the CT1 carbohydrate is lost in gain-of-function transgenic mice over-expressing the blood group A glycosyltransferase in which there is aberrant targeting of M72 axons. Taken together, these results suggest that the CT1 carbohydrate, together with other carbohydrates, contributes to axon guidance during the establishment of the olfactory topographic map.


Subject(s)
Glycolipids/chemistry , Glycolipids/metabolism , Olfactory Bulb/anatomy & histology , Olfactory Bulb/metabolism , Animals , Mice , Mice, Transgenic , Olfactory Bulb/growth & development , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/ultrastructure
20.
Mol Cell Neurosci ; 46(1): 282-95, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20888913

ABSTRACT

During development of the primary olfactory system, sensory axons project from the nasal cavity to the glomerular layer of the olfactory bulb. In the process axons can branch inappropriately into several glomeruli and sometimes over-shoot the glomerular layer, entering the deeper external plexiform layer. However in the adult, axons are rarely observed within the external plexiform layer. While chemorepulsive cues are proposed to restrict axons to the glomerular layer in the embryonic animal, these cues are clearly insufficient for all axons in the postnatal animal. We hypothesised that the external plexiform layer is initially an environment in which axons are able to grow but becomes increasingly inhibitory to axon growth in later postnatal development. We have determined that rather than having short localised trajectories as previously assumed, many axons that enter the external plexiform layer had considerable trajectories and projected preferentially along the ventro-dorsal and rostro-caudal axes for up to 950 µm. With increasing age, fewer axons were detected within the external plexiform layer but axons continued to be present until P17. Thus the external plexiform layer is initially an environment in which axons can extensively grow. We next tested whether the external plexiform layer became increasingly inhibitory to axon growth by microdissecting various layers of the olfactory bulb and preparing protein extracts. When assayed using olfactory epithelium explants of the same embryonic age, primary olfactory axons became increasingly inhibited by extract prepared from the external plexiform layer of increasingly older animals. These results demonstrate that primary olfactory axons can initially grow extensively in the external plexiform layer, but that during postnatal development inhibitory cues are upregulated that reduce axon growth within the external plexiform layer.


Subject(s)
Axons/physiology , Olfactory Bulb/anatomy & histology , Olfactory Bulb/embryology , Olfactory Bulb/growth & development , Olfactory Pathways/anatomy & histology , Olfactory Pathways/embryology , Olfactory Pathways/growth & development , Animals , Antithyroid Agents/pharmacology , Axons/drug effects , Axons/ultrastructure , Methimazole/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL