Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Environ Res ; 262(Pt 1): 119860, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214492

ABSTRACT

Dam reservoirs are at the core of local water storage and supply, especially in water-stressed regions of the world with acute water shortage problems. However, evaporative losses from these reservoirs and their storage efficiency are often overlooked in water budgeting. We offer a mechanistic approach that combines physically-based modeling with remote sensing information of reservoir characteristics to reliably predict evaporative losses from dam reservoirs. The developed framework is used to predict evaporative water losses from potential dam reservoirs in different basins worldwide. We apply this framework to 10 of the largest dam reservoirs in the world's water-stressed regions to quantify evaporative water losses. Our analysis, spanning from 2000 to 2020, reveals considerable variations in annual evaporation rates in the reservoirs located in water-deprived regions exceeding 3200 mm/year during the study period with the total evaporative loss reaching 26.5 km3/year. The evaporative water loss accounts up to 15.8% of the storage capacity in one of the dam reservoirs, posing significant challenges for water allocation and conservation strategies, with notable economic and environmental consequences in regions already suffering from water scarcity.

2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161268

ABSTRACT

Global groundwater assessments rank Iran among countries with the highest groundwater depletion rate using coarse spatial scales that hinder detection of regional imbalances between renewable groundwater supply and human withdrawals. Herein, we use in situ data from 12,230 piezometers, 14,856 observation wells, and groundwater extraction points to provide ground-based evidence about Iran's widespread groundwater depletion and salinity problems. While the number of groundwater extraction points increased by 84.9% from 546,000 in 2002 to over a million in 2015, the annual groundwater withdrawal decreased by 18% (from 74.6 to 61.3 km3/y) primarily due to physical limits to fresh groundwater resources (i.e., depletion and/or salinization). On average, withdrawing 5.4 km3/y of nonrenewable water caused groundwater tables to decline 10 to 100 cm/y in different regions, averaging 49 cm/y across the country. This caused elevated annual average electrical conductivity (EC) of groundwater in vast arid/semiarid areas of central and eastern Iran (16 out of 30 subbasins), indicating "very high salinity hazard" for irrigation water. The annual average EC values were generally lower in the wetter northern and western regions, where groundwater EC improvements were detected in rare cases. Our results based on high-resolution groundwater measurements reveal alarming water security threats associated with declining fresh groundwater quantity and quality due to many years of unsustainable use. Our analysis offers insights into the environmental implications and limitations of water-intensive development plans that other water-scarce countries might adopt.


Subject(s)
Groundwater , Human Activities , Agriculture , Electric Conductivity , Geography , Humans , Iran , Time Factors
3.
BMC Med ; 21(1): 429, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953291

ABSTRACT

BACKGROUND: Vaccination has played a pivotal role in reducing the burden of COVID-19. Despite numerous studies highlighting its benefits in reducing the risk of severe disease and death, we still lack a quantitative understanding of how varying vaccination roll-out rates influence COVID-19 mortality. METHODS: We developed a framework for estimating the number of avertable COVID-19 deaths (ACDs) by vaccination in Iran. To achieve this, we compared Iran's vaccination roll-out rates with those of eight model countries that predominantly used inactivated virus vaccines. We calculated net differences in the number of fully vaccinated individuals under counterfactual scenarios where Iran's per-capita roll-out rate was replaced with that of the model countries. This, in turn, enabled us to determine age specific ACDs for the Iranian population under counterfactual scenarios where number of COVID-19 deaths are estimated using all-cause mortality data. These estimates covered the period from the start of 2020 to 20 April 2022. RESULTS: We found that while Iran would have had an approximately similar number of fully vaccinated individuals under counterfactual roll-out rates based on Bangladesh, Nepal, Sri Lanka, and Turkey (~ 65-70%), adopting Turkey's roll-out rates could have averted 50,000 (95% confidence interval: 38,100-53,500) additional deaths, while following Bangladesh's rates may have resulted in 52,800 (17,400-189,500) more fatalities in Iran. Surprisingly, mimicking Argentina's slower roll-out led to only 12,600 (10,400-13,300) fewer deaths, despite a higher counterfactual percentage of fully vaccinated individuals (~ 79%). Emulating Montenegro or Bolivia, with faster per capita roll-out rates and approximately 50% counterfactual full vaccination, could have prevented more deaths in older age groups, especially during the early waves. Finally, replicating Bahrain's model as an upper-bound benchmark, Iran could have averted 75,300 (56,000-83,000) deaths, primarily in the > 50 age groups. CONCLUSIONS: Our analysis revealed that faster roll-outs were consistently associated with higher numbers of averted deaths, even in scenarios with lower overall coverage. This study offers valuable insights into future decision-making regarding infectious disease epidemic management through vaccination strategies. It accomplishes this by comparing various countries' relative performance in terms of timing, pace, and vaccination coverage, ultimately contributing to the prevention of COVID-19-related deaths.


Subject(s)
COVID-19 , Perinatal Death , Vaccines , Female , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Iran/epidemiology , Vaccination , Vaccination Coverage
4.
J Environ Manage ; 280: 111843, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360255

ABSTRACT

Understanding the complexity and feedbacks among food, energy, and water (FEW) systems is key to making informed decisions about sustainable development. This paper presents qualitative representation and quantitative system dynamics simulation of the water resources system in the Qazvin Plain, Iran, taking into account the energy intensity of water supply and interconnected water use sectors (e.g., urban, industrial, and agricultural). Qazvin Plain faces water resources challenges that are common to arid/semi-arid areas, including frequent droughts, declining surface water and groundwater, and increased urban and agricultural water demand. A system dynamics model is developed using historical data (2006-2016) to investigate the effects of anticipated dynamics of integrated water and energy sectors in the next two decades. The results of policy scenarios (2020-2039) demonstrate that the continuation of the existing management policies will cause severe damage to the water and energy sectors, pushing the system towards water resources limits to growth. An annual groundwater table decline of nearly 1 m is anticipated, indicating significant overshoot of the plain's natural recharge capacity, which may lead to the depletion of recoverable groundwater in the plain within the next three decades. The groundwater table decline will cause energy consumption of water supply to increase by about 32% (i.e., 380 GWh) to maintain irrigated agriculture. It is critical to implement a combination of water demand and supply management policies (e.g., net agricultural water savings and recycling treated wastewater) to delay the problem of water limits to growth in the region.


Subject(s)
Groundwater , Water , Iran , Water Resources , Water Supply
5.
Environ Manage ; 68(1): 53-64, 2021 07.
Article in English | MEDLINE | ID: mdl-33829278

ABSTRACT

The Zayandeh-Rud River Basin in the central plateau of Iran continues to grapple with water shortages due to a water-intensive development path made possible by a primarily supply-oriented water management approach to battle the water limits to growth. Despite inter-basin water transfers and increasing groundwater supply, recurring water shortages and associated tensions among stakeholders underscore key weaknesses in the current water management paradigm. There was an alarming trend of groundwater depletion in the basin's four main aquifers in the 1993-2016 period as indicated by the results of the Mann-Kendall3 (MK3) test and Innovative Trend Analysis (ITA) of groundwater volume. The basin's water resources declined by more than 6 BCM in 2016 compared to 2005 based on the equivalent water height (EWH) derived from monthly data (2002-2016) from the GRACE. The extensive groundwater depletion is an unequivocal evidence of reduced water availability in the face of growing basin-wide demand, necessitating water saving in all water use sectors. Implementing an integrated water resources management plan that accounts for evolving water supply priorities, growing demand and scarcity, and institutional changes is an urgent step to alleviate the growing tensions and preempt future water insecurity problems that are bound to occur if demand management approaches are delayed.


Subject(s)
Groundwater , Water , Iran , Rivers , Water Supply
6.
Lancet ; 393(10184): 1984-2005, 2019 05 11.
Article in English | MEDLINE | ID: mdl-31043324

ABSTRACT

Being the second-largest country in the Middle East, Iran has a long history of civilisation during which several dynasties have been overthrown and established and health-related structures have been reorganised. Iran has had the replacement of traditional practices with modern medical treatments, emergence of multiple pioneer scientists and physicians with great contributions to the advancement of science, environmental and ecological changes in addition to large-scale natural disasters, epidemics of multiple communicable diseases, and the shift towards non-communicable diseases in recent decades. Given the lessons learnt from political instabilities in the past centuries and the approaches undertaken to overcome health challenges at the time, Iran has emerged as it is today. Iran is now a country with a population exceeding 80 million, mainly inhabiting urban regions, and has an increasing burden of non-communicable diseases, including cardiovascular diseases, hypertension, diabetes, malignancies, mental disorders, substance abuse, and road injuries.


Subject(s)
History of Medicine , Noncommunicable Diseases/epidemiology , Health Transition , History, Ancient , Humans , Iran/epidemiology , Persia , Quality-Adjusted Life Years
7.
Environ Manage ; 57(1): 176-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26319030

ABSTRACT

Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.


Subject(s)
Conservation of Natural Resources/economics , Turtles/growth & development , Adult , Animals , Conservation of Natural Resources/methods , Ecosystem , Female , Florida , Humans , Knowledge , Male , Middle Aged , Perception , Residence Characteristics , Seawater/chemistry , Surveys and Questionnaires/economics
8.
J Environ Manage ; 133: 343-54, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24412983

ABSTRACT

Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process.


Subject(s)
Resource Allocation , Water Supply , Least-Squares Analysis , Models, Theoretical
9.
Sci Total Environ ; 952: 175691, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39181262

ABSTRACT

This study addresses the intricate interplay between climate, vegetation, and livestock dynamics in Tanzania within the Climate-Vegetation-Livestock (CVL) nexus through a quantitative assessment. By examining the temporal and spatial relationships between vegetation indices (NDVI, EVI, NPP) and key climatic variables (Precipitation, Temperature, Evapotranspiration) from 2009 to 2019, and projecting to 2050, this research aims to elucidate vegetation responses to climate change and its subsequent impacts on livestock. To this end, the relationship between the vegetation dynamics indicators (NDVI, NPP) and climate parameters is evaluated to quantify the vegetation response to climate change using statistical models. Next, an examination of multicollinearity is conducted to investigate potential interactions (nexus) between variables, incorporating the correlation among independent variables. Notably, the evaluation of performance and accuracy for the mentioned models is conducted through the cross-validation method and validation indices. Ultimately, the variation between projected NPP and NDVI (average for 2040-2060) and the present NPP and NDVI (average for 2009-2020) identifies the regions that are most likely susceptible, showcasing the vegetation cover's reaction to climate change in different emission scenarios. The results unveil significant spatio-temporal variations in vegetation dynamics influenced by climatic factors, where higher precipitation and temperatures correlate with increased vegetation health and productivity. The projected fluctuations in NDVI and NPP values indicate varying trends across different regions, with a general decrease in vegetation density and productivity from the northeast to the west under both RCP2.6 and RCP8.5 scenarios by 2050. This decline is attributed to anticipated changes in precipitation and temperature patterns driven by climate change. Furthermore, significant declines in vegetation density and productivity under emission scenarios, particularly in the southern regions compared to the present, suggest greater vulnerability to climate change impacts. This highlights the need for targeted mitigation strategies in these vulnerable areas. Meanwhile, northeast areas under both NDVI and NPP will remain unchanged across both climate scenarios. Moreover, analysis of livestock distribution maps indicates areas of vulnerability under climate change scenarios, with implications for future livestock management and agricultural practices. These findings underscore the importance of proactive planning and targeted interventions to enhance resilience and sustainable development in vulnerable regions, emphasizing the need for integrated approaches that consider the complex interactions between climate, vegetation, and livestock dynamics.


Subject(s)
Climate Change , Grassland , Livestock , Tanzania , Environmental Monitoring , Animals , Ecosystem
10.
Sci Data ; 11(1): 108, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263163

ABSTRACT

As the climate crisis intensifies, it is becoming increasingly important to conduct research aimed at fully understanding the climate change impacts on various infrastructure systems. In particular, the water-electricity demand nexus is a growing area of focus. However, research on the water-electricity demand nexus requires the use of demand data, which can be difficult to obtain, especially across large spatial extents. Here, we present a dataset containing over a decade (2007-2018) of monthly water and electricity consumption data for 46 major US cities (2018 population >250,000). Additionally, we include pre-processed climate data from the North American Regional Reanalysis (NARR) to supplement studies on the relationship between the water-electricity demand nexus and the local climate. This data can be used for a number of studies that require water and/or electricity demand data across long time frames and large spatial extents. The data can also be used to evaluate the possible impacts of climate change on the water-electricity demand nexus by leveraging the relationship between the observed values.

11.
Birth Defects Res ; 116(9): e2397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39215441

ABSTRACT

BACKGROUND: Exposure to long-lasting extreme ambient temperatures in the periconceptional or early pregnancy period might increase the risk of neural tube defects (NTDs). We tested whether prolonged severe heat exposure as experienced during the 2003 extreme heatwave in France, affected the risk of NTDs. METHODS: We retrieved NTD cases spanning from January 1994 to December 2018 from the Paris Registry of Congenital Malformations. The 2003 heatwave was characterized by the long duration and high intensity of nine consecutive days with temperatures ≥35°C. We classified monthly conceptions occurring in August 2003 as "exposed" to prolonged extreme heat around conception (i.e., periconceptional period). We assessed whether the risk of NTDs among cohorts exposed to the prolonged severe heatwave of 2003 in the periconceptional period differed from expected values using Poisson/negative binomial regression. FINDINGS: We identified 1272 NTD cases from January 1994 to December 2018, yielding a monthly mean count of 4.24. Ten NTD cases occurred among births conceived in August 2003. The risk of NTD was increased in the cohort with periconceptional exposure to the August 2003 heatwave (relative risk = 2.14, 95% confidence interval: 1.46 to 3.13), compared to non-exposed cohorts. Sensitivity analyses excluding July and September months or restricting to summer months yielded consistent findings. INTERPRETATION: Evidence from the "natural experiment" of an extreme climate event suggests an elevated risk of NTDs following exposure to prolonged extreme heat during the periconceptional period.


Subject(s)
Climate Change , Extreme Heat , Neural Tube Defects , Humans , Neural Tube Defects/etiology , Neural Tube Defects/epidemiology , Female , France/epidemiology , Pregnancy , Extreme Heat/adverse effects , Adult , Risk Factors , Male , Infant, Newborn , Registries , Congenital Abnormalities/epidemiology , Congenital Abnormalities/etiology , Hot Temperature/adverse effects
12.
Environ Health Insights ; 16: 11786302221128454, 2022.
Article in English | MEDLINE | ID: mdl-36262199

ABSTRACT

Composting is one of the environmentally friendly ways of reducing organic waste. It is economically viable since it cuts costs associated with the hauling of wastes and enables farmers to reduce the use of fertilizers. Composting operations are relatively non-existent in the solid municipal waste sector, as the market has molded itself and grown into a standard "bury-or-burn" model. As humans are trying to address global warming, composting proves to be a promising climate change mitigation option, benefiting societies in terms of the environment, the economy, and overall health. This study projects that-with the current trends-by the end of 2030, the U.S. can increase the compost to waste ratio by 18% from 10%, reducing carbon emissions by 30 million tons a year while saving around 16 billion USD in municipal waste management costs. Analyzing the existing records in the OECD countries suggests that economic motives are not powerful enough to incentivize the industry/household toward composting. Stricter environmental policies can boost the composting volume by 214-574 thousand tons per year. Imposing waste taxes and penalties can give birth to a vast industry that has not yet flourished while the economic subsidies financed by the collected taxes and penalties can incentivize the private sector to further invest in composting.

13.
Sci Total Environ ; 717: 135035, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31839284

ABSTRACT

Global warming urges governments to decarbonise their energy portfolios. Many governments have indistinctly transited away from fossil fuels towards renewable energies. However, a sustainable turnaround calls for limiting the overall impact of this transition on environmental resources and the economy. This study identifies the most desirable energy alternatives for the Middle Eastern and North African (MENA) countries based on their environmental and economic footprints using the Relative Aggregate Footprint (RAF) indicator. The RAFs of eleven widespread electricity generation technologies are computed for each country by considering the availability of four resources - energy, water, land, and the economy - which were weighted according to the national resource availability conditions. The results indicate that the MENA region must adapt their electricity mix to mitigate the impacts of climate change with respect to resource availability conditions, especially their scarce water resources. Due to the specificities of this region, deploying biomass and large-scale hydropower may lower greenhouse gases but significantly alter the impact on other valuable natural resources. Therefore, wind, geothermal, and nuclear power plants seem more desirable for a transition away from carbon-intensive technologies while their secondary effects on other resources (e.g. nuclear energy's possible water and environmental impacts) must be carefully considered.

14.
Sci Rep ; 7(1): 7670, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28794520

ABSTRACT

Increasing population has posed insurmountable challenges to agriculture in the provision of future food security, particularly in the Middle East and North Africa (MENA) region where biophysical conditions are not well-suited for agriculture. Iran, as a major agricultural country in the MENA region, has long been in the quest for food self-sufficiency, however, the capability of its land and water resources to realize this goal is largely unknown. Using very high-resolution spatial data sets, we evaluated the capacity of Iran's land for sustainable crop production based on the soil properties, topography, and climate conditions. We classified Iran's land suitability for cropping as (million ha): very good 0.4% (0.6), good 2.2% (3.6), medium 7.9% (12.8), poor 11.4% (18.5), very poor 6.3% (10.2), unsuitable 60.0% (97.4), and excluded areas 11.9% (19.3). In addition to overarching limitations caused by low precipitation, low soil organic carbon, steep slope, and high soil sodium content were the predominant soil and terrain factors limiting the agricultural land suitability in Iran. About 50% of the Iran's existing croplands are located in low-quality lands, representing an unsustainable practice. There is little room for cropland expansion to increase production but redistribution of cropland to more suitable areas may improve sustainability and reduce pressure on water resources, land, and ecosystem in Iran.

15.
Sci Rep ; 7(1): 12910, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018217

ABSTRACT

This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (hout) and inflow (hin). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

16.
Sci Rep ; 6: 36241, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824092

ABSTRACT

Agriculture is the mainstay of Malawi's economy and maize is the most important crop for food security. As a Least Developed Country (LDC), adverse effects of climate change (CC) on agriculture in Malawi are expected to be significant. We examined the impacts of CC on maize production and food security in Malawi's dominant cereal producing region, Lilongwe District. We used five Global Circulation Models (GCMs) to make future (2011 to 2100) rainfall and temperature projections and simulated maize yields under these projections. Our future rainfall projections did not reveal a strong increasing or decreasing trend, but temperatures are expected to increase. Our crop modelling results, for the short-term future, suggest that maize farming might benefit from CC. However, faster crop growth could worsen Malawi's soil fertility problem. Increasing temperature could drive lower maize yields in the medium to long-term future. Consequently, up to 12% of the population in Lilongwe District might be vulnerable to food insecurity by the end of the century. Measures to increase soil fertility and moisture must be developed to build resilience into Malawi's agriculture sector.


Subject(s)
Crops, Agricultural/growth & development , Food Supply , Zea mays/growth & development , Climate Change , Crop Production , Developing Countries , Hot Temperature , Malawi , Models, Theoretical
17.
Sci Total Environ ; 550: 349-361, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26824270

ABSTRACT

Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and fossil natural gas to be more sensitive to changing fuel prices as compared to other alternatives.

18.
Waste Manag ; 54: 27-38, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27237016

ABSTRACT

Inefficient collection and scheduling procedures negatively affect residential curbside collection (RCC) efficiency, greenhouse gas (GHG) emissions, and cost. As Florida aims to achieve a 75% recycling goal by 2020, municipalities have switched to single-stream recycling to improve recycling efficiency. Waste diversion and increased collection cost have forced some municipalities to reduce garbage collection frequency. The goal of this study was to explore the trade-offs between environmental and economic factors of RCC systems in Florida by evaluating the RCC system design of 25 different Central Florida communities. These communities were grouped into four sets based on their RCC garbage, yard waste, and recyclables collection design, i.e., frequency of collection and use of dual-stream (DS) or single-stream (SS) recyclables collection system. For the 25 communities studied, it was observed that RCC programs that used SS recyclables collection system recycled approximately 15-35%, by weight of the waste steam, compared to 5-20% for programs that used DS. The GHG emissions associated with collection programs were estimated to be between 36 and 51kg CO2eq per metric ton of total household waste (garbage and recyclables), depending on the garbage collection frequency, recyclables collection system (DS or SS), and recyclables compaction. When recyclables offsets were considered, the GHG emissions associated with programs using SS were estimated between -760 and -560, compared to between -270 and -210kg CO2eq per metric ton of total waste for DS programs. These data suggest that RCC system design can significantly impact recyclables generation rate and efficiency, and consequently determine environmental and economic impacts of collection systems. Recycling participation rate was found to have a significant impact on the environmental and financial performance of RCC programs. Collection emissions were insignificant compared to the benefits of recycling. SS collection of recyclables provided cost benefits compared to DS, mainly due to faster collection time.


Subject(s)
Cities/statistics & numerical data , Refuse Disposal/methods , Cost-Benefit Analysis , Florida , Garbage , Recycling/economics , Refuse Disposal/economics , Refuse Disposal/statistics & numerical data
19.
20.
Sci Total Environ ; 442: 405-19, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23178843

ABSTRACT

This study evaluates climate change impacts on crop production and water productivity of four major crops (wheat, barley, rice, and corn) in Iran's Zayandeh-Rud River Basin. Multi-model ensemble scenarios are used to deal with uncertainties in climate change projections for the study period (2015-2044). On average, monthly temperature will increase by 1.1 to 1.5°C under climate change. Monthly precipitation changes may be positive or negative in different months of the year. Nevertheless, on the annual basis, precipitation will decrease by 11 to 31% with climate change. While warming can potentially shorten the crop growth period, crop production and water productivity of all crops are expected to decrease due to lower precipitation and higher water requirements under higher temperature. Out of the four studied crops, rice and corn are more vulnerable to climate change due to their high irrigation water demand. So, their continued production can be compromised under climate change. This finding is of particular importance, given the locally high economic and food value of these crops in central Iran.


Subject(s)
Climate Change , Crops, Agricultural/growth & development , Environmental Monitoring/methods , Models, Theoretical , Rivers , Water Supply/standards , Iran
SELECTION OF CITATIONS
SEARCH DETAIL