Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Radiology ; 311(3): e231598, 2024 06.
Article in English | MEDLINE | ID: mdl-38916502

ABSTRACT

Background Photon-counting CT (PCCT) represents a recent advancement in CT, offering improved spatial resolution and spectral separability. By using multiple adjustable energy bins, PCCT enables K-edge imaging, allowing mixed contrast agent distinction. Deep-silicon is a new type of photon-counting detector with different characteristics compared with cadmium photon-counting detectors. Purpose To evaluate the performance of a prototype deep-Si PCCT scanner and compare it with that of a state-of-the-art dual-energy energy-integrating detector (EID) scanner in imaging coronary artery plaques enhanced with iodine and K-edge contrast agents. Materials and Methods A series of 10 three-dimensional-printed inserts (diameter, 3.5 mm) was prepared, and materials mimicking soft and calcified plaques were added to simulate stenosed coronary arteries. Inserts filled with an iodine- or gadolinium-based contrast agent (GBCA) were scanned. Virtual monoenergetic images (VMIs) and iodine maps were generated using two- and eight-energy bin data from EID CT and PCCT, respectively. Gadolinium maps were calculated for PCCT. The CT numbers of VMIs and iodine maps were compared. Spatial resolution and blooming artifacts were compared on the 70-keV VMIs in plaque-free and calcified coronary arteries. Results No evidence of a significant difference in the CT number of 70-keV images was found except in inserts containing GBCAs. In the absence of a GBCA, excellent (r > 0.99) agreement for iodine was found. PCCT could quantify the GBCA within 0.2 mg Gd/mL ± 0.8 accuracy of the ground truth, whereas EID CT failed to detect the GBCA. Lumen measurements were more accurate for PCCT than for EID CT, with mean errors of 167 versus 442 µm (P < .001) compared with the 3.5-mm ground truth. Conclusion Deep-Si PCCT demonstrated good accuracy in iodine quantification and could accurately decompose mixtures of two contrast agents. Its improved spatial resolution resulted in sharper images with blooming artifacts reduced by 50% compared with a state-of-the-art dual-energy EID CT scanner. © RSNA, 2024.


Subject(s)
Contrast Media , Phantoms, Imaging , Photons , Humans , Tomography, X-Ray Computed/methods , Coronary Vessels/diagnostic imaging , Silicon , Equipment Design
2.
Med Phys ; 51(10): 7012-7037, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39072826

ABSTRACT

Multi-energy computed tomography (MECT) offers the opportunity for advanced visualization, detection, and quantification of select elements (e.g., iodine) or materials (e.g., fat) beyond the capability of standard single-energy computed tomography (CT). However, the use of MECT requires careful consideration as substantially different hardware and software approaches have been used by manufacturers, including different sets of user-selected or hidden parameters that affect the performance and radiation dose of MECT. Another important consideration when designing MECT protocols is appreciation of the specific tasks being performed; for instance, differentiating between two different materials or quantifying a specific element. For a given task, it is imperative to consider both the radiation dose and task-specific image quality requirements. Development of a quality control (QC) program is essential to ensure the accuracy and reproducibility of these MECT applications. Although standard QC procedures have been well established for conventional single-energy CT, the substantial differences between single-energy CT and MECT in terms of system implementations, imaging protocols, and clinical tasks warrant QC tests specific to MECT. This task group was therefore charged with developing a systematic QC program designed to meet the needs of MECT applications. In this report, we review the various MECT approaches that are commercially available, including information about hardware implementation, MECT image types, image reconstruction, and postprocessing techniques that are unique to MECT. We address the requirements for MECT phantoms, review representative commercial MECT phantoms, and offer guidance regarding homemade MECT phantoms. We discuss the development of MECT protocols, which must be designed carefully with proper consideration of MECT technology, imaging task, and radiation dose. We then outline specific recommended QC tests in terms of general image quality, radiation dose, differentiation and quantification tasks, and diagnostic and therapeutic applications.


Subject(s)
Quality Control , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Radiation Dosage
3.
IEEE Trans Nucl Sci ; 58(5): 2219-2225, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22262925

ABSTRACT

Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous (99m)Tc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification.

4.
IEEE Trans Nucl Sci ; 56(3): 661-670, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-21331301

ABSTRACT

The emergence of application-specific 3D tomographic small animal and dedicated breast imaging systems has stimulated the development of simple methods to quantify the spatial resolution or Modulation Transfer Function (MTF) of the system in three dimensions. Locally determined MTFs, obtained from line source measurements at specific locations, can characterize spatial variations in the system resolution and can help correct for such variations. In this study, a method is described to measure the MTF in 3D for a compact SPECT system that uses a 16 × 20 cm(2) CZT-based compact gamma camera and 3D positioning gantry capable of moving in different trajectories. Image data are acquired for a novel phantom consisting of three radioactivity-filled capillary tubes, positioned nearly orthogonally to each other. These images provide simultaneous measurements of the local MTF along three dimensions of the reconstructed imaged volume. The usefulness of this approach is shown by characterizing the MTF at different locations in the reconstructed imaged 3D volume using various (1) energy windows; (2) iterative reconstruction parameters including number of iterations, voxel size, and number of projection views; (3) simple and complex 3D orbital trajectories including simple vertical axis of rotation, simple tilt, complex circle-plus-arc, and complex sinusoids projected onto a hemisphere; and (4) object shapes in the camera's field of view. Results indicate that the method using the novel phantom can provide information on spatial resolution effects caused by system design, sampling, energy windows, reconstruction parameters, novel 3D orbital trajectories, and object shapes. Based on these measurements that are useful for dedicated tomographic breast imaging, it was shown that there were small variations in the MTF in 3D for various energy windows and reconstruction parameters. However, complex trajectories that uniformly sample the breast volume of interest were quantitatively shown to have slightly better spatial resolution performance than more simple orbits.

5.
Phys Med ; 21 Suppl 1: 48-55, 2006.
Article in English | MEDLINE | ID: mdl-17645994

ABSTRACT

We evaluate a newly developed dedicated cone-beam transmission computed mammotomography (CmT) system configuration using an optimized quasi-monochromatic cone beam technique for attenuation correction of SPECT in a planned dual-modality emission and transmission system for pendant, uncompressed breasts. In this study, we perform initial CmT acquisitions using various sized breast phantoms to evaluate an offset cone-beam geometry. This offset geometry provides conjugate projections through a full 360 degree gantry rotation, and thus yields a greatly increased effective field of view, allowing a much wider range of breast sizes to be imaged without truncation in reconstructed images. Using a tungsten X-ray tube and digital flat-panel X-ray detector in a compact geometry, we obtained initial CmT scans without shift and with the offset geometry, using geometrical frequency/resolution phantoms and two different sizes of breast phantoms. Acquired data were reconstructed using an ordered subsets transmission iterative algorithm. Projection images indicate that the larger, 20 cm wide, breast requires use of a half-cone-beam offset scan to eliminate truncation artifacts. Reconstructed image results illustrate elimination of truncation artifacts, and that the novel quasi-monochromatic beam yields reduced beam hardening. The offset geometry CmT system can indeed potentially be used for structural imaging and accurate attenuation correction for the functional dedicated breast SPECT system.

6.
Proc SPIE Int Soc Opt Eng ; 7961(796158)2011 Feb 13.
Article in English | MEDLINE | ID: mdl-22267985

ABSTRACT

With a dedicated breast CT system using a quasi-monochromatic x-ray source and flat-panel digital detector, the 2D and 3D scatter to primary ratios (SPR) of various geometric phantoms having different densities were characterized in detail. Projections were acquired using geometric and anthropomorphic breast phantoms. Each phantom was filled with 700ml of 5 different water-methanol concentrations to simulate effective boundary densities of breast compositions from 100% glandular (1.0g/cm(3)) to 100% fat (0.79g/cm(3)). Projections were acquired with and without a beam stop array. For each projection, 2D scatter was determined by cubic spline interpolating the values behind the shadow of each beam stop through the object. Scatter-corrected projections were obtained by subtracting the scatter, and the 2D SPRs were obtained as a ratio of the scatter to scatter-corrected projections. Additionally the (un)corrected data were individually iteratively reconstructed. The (un)corrected 3D volumes were subsequently subtracted, and the 3D SPRs obtained from the ratio of the scatter volume-to-scatter-corrected (or primary) volume. Results show that the 2D SPR values peak in the center of the volumes, and were overall highest for the simulated 100% glandular composition. Consequently, scatter corrected reconstructions have visibly reduced cupping regardless of the phantom geometry, as well as more accurate linear attenuation coefficients. The corresponding 3D SPRs have increased central density, which reduces radially. Not surprisingly, for both 2D and 3D SPRs there was a dependency on both phantom geometry and object density on the measured SPR values, with geometry dominating for 3D SPRs. Overall, these results indicate the need for scatter correction given different geometries and breast densities that will be encountered with 3D cone beam breast CT.

7.
IEEE Nucl Sci Symp Conf Rec (1997) ; 2010: 2319-2324, 2010.
Article in English | MEDLINE | ID: mdl-25999683

ABSTRACT

Attenuation correction is necessary for SPECT quantification. There are a variety of methods to create attenuation maps. For dedicated breast SPECT imaging, it is unclear if either SPECT- or CT-based attenuation map would provide the most accurate quantification and whether or not segmenting the different tissue types will have an effect on the qunatification. For these experiments, 99mTc diluted in methanol and water was filled into geometric and anthropomorphic breast phantoms and was imaged with a dedicated dual-modality SPECT-CT scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical and 30° tilted parallel beam, and complex sinusoidal trajectories. CT images were acquired using a quasi-monochromatic x-ray source and CsI(T1) flat panel digital detector in a half-cone beam geometry. Measured scatter correction for SPECT and CT were implemented. To compare photon attenuation correction in the reconstructed SPECT images, various volumetric attenuation matrices were derived from 1) uniform SPECT, 2) uniform CT, and 3) segmented CT, populated with different attenuation coefficient values. Comparisons between attenuation masks using phantoms consisting of materials with different attenuation values show that at 140 keV the differences in the attenuation between materials do not affect the quantification as much as the size and alignment of the attenuation map. The CT-based attenuation maps give quantitative values 30% below the actual value, but are consistent. While the SPECT-based attenuation maps can provide within 10% accurate quantitative values, but are less consistent.

8.
Magn Reson Med ; 48(2): 341-50, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12210943

ABSTRACT

This study investigates the distribution of ventilation-perfusion (V/Q) signal intensity (SI) ratios using oxygen-enhanced and arterial spin labeling (ASL) techniques in the lungs of 10 healthy volunteers. Ventilation and perfusion images were simultaneously acquired using the flow-sensitive alternating inversion recovery (FAIR) method as volunteers alternately inhaled room air and 100% oxygen. Images of the T(1) distribution were calculated for five volunteers for both selective (T(1f)) and nonselective (T(1)) inversion. The average T(1) was 1360 ms +/- 116 ms, and the average T(1f) was 1012 ms +/- 112 ms, yielding a difference that is statistically significant (P < 0.002). Excluding large pulmonary vessels, the average V/Q SI ratios were 0.355 +/- 0.073 for the left lung and 0.371 +/- 0.093 for the right lung, which are in agreement with the theoretical V/Q SI ratio. Plots of the V/Q SI ratio are similar to the logarithmic normal distribution obtained by multiple inert gas elimination techniques, with a range of ratios matching ventilation and perfusion. This MRI V/Q technique is completely noninvasive and does not involve ionized radiation. A limitation of this method is the nonsimultaneous acquisition of perfusion and ventilation data, with oxygen administered only for the ventilation data.


Subject(s)
Magnetic Resonance Imaging/methods , Oxygen , Ventilation-Perfusion Ratio , Adult , Humans , Image Processing, Computer-Assisted , Lung/anatomy & histology , Middle Aged , Pulmonary Circulation , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL