ABSTRACT
Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms' tumor 1 (WT1) messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which were sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in nonresponders (53.8% vs 25.0%; P = .01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25%, and 5-year relapse-free survival was higher in responders than in nonresponders (50% vs 7.7%; P < .0001). In patients age ≤65 and >65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared with 51.7% and 18% in the Swedish Acute Leukemia Registry. Long-term clinical response was correlated with increased circulating frequencies of polyepitope WT1-specific CD8+ T cells. Long-term OS was correlated with interferon-γ+ and tumor necrosis factor-α+ WT1-specific responses in delayed-type hypersensitivity-infiltrating CD8+ T lymphocytes. In conclusion, vaccination of patients with AML with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8+ T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224.
Subject(s)
Cancer Vaccines/immunology , Dendritic Cells/immunology , Leukemia, Myeloid, Acute/prevention & control , Leukemia, Myeloid, Acute/therapy , Vaccination , Aged , Biomarkers, Tumor/metabolism , Cytokines/metabolism , Disease-Free Survival , Electroporation , Female , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/immunology , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recurrence , Remission Induction , Treatment Outcome , WT1 Proteins/genetics , WT1 Proteins/metabolismABSTRACT
OBJECTIVE: Non-invasive prenatal tests (NIPTs) interrogating the complete genome are able to detect not only fetal trisomy 13, 18 or 21 but additionally provide information on other (sub)chromosomal aberrations that can be fetal or maternal in origin. We demonstrate that in a subset of cases, this information is clinically relevant and should be reported to ensure adequate follow-up. METHOD: Genome-wide NIPT was carried out and followed by a software analysis pipeline optimized to detect subchromosomal aberrations. RESULTS: The NIPT profile showed deletions on chromosomes 9 and 22: NIPT 9q33.3q34.12(129150001-133750000)x1,22q11.23(23550001-25450000)x1,22q13.1(37850001-39600000)x1. This result was confirmed by single nucleotide polymorphism array on maternal genomic DNA, which also demonstrated that the deletions were somatic in nature. Fluorescence in situ hybridization and quantitative real-time polymerase chain reaction revealed that the deletions were flanking the translocation breakpoint on the derivative chromosome 9 as the result of a t(9;22)(q34;q11.2) translocation with BCR-ABL1 fusion typical for chronic myeloid leukaemia (CML). Multidisciplinary counselling, together with complete blood count, taught that the woman was in an early chronic phase CML. The woman was followed up closely, and treatment could be postponed until after delivery. CONCLUSION: Genome-wide NIPT identified a CML in chronic phase caused by the typical t(9;22)(q34;q11.2) translocation and accompanied by deletions flanking the translocation breakpoints. © 2016 John Wiley & Sons, Ltd.
Subject(s)
Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 9/genetics , DNA/blood , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Pregnancy Complications, Neoplastic/diagnosis , Adult , Chromosome Deletion , DNA/genetics , Female , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Complications, Neoplastic/blood , Pregnancy Complications, Neoplastic/genetics , Pregnancy Trimester, First , Prenatal Diagnosis , Real-Time Polymerase Chain Reaction , Translocation, GeneticABSTRACT
Mastocytosis is a complex heterogenous multisystem disorder that is characterized by pathologic activation or accumulation of neoplastic mast cells (MCs) in one or more organs. This clonal MC expansion is often associated with a somatic gain-of-function mutation (D816V in most of the cases) in the KIT gene, encoding for the MC surface receptor KIT (CD117), a stem cell growth factor receptor. Based on clinical and biochemical criteria, the World Health Organization (WHO) divided mastocytosis into different subclasses. The exact prevalence of mastocytosis remains elusive, but it is estimated that the disease affects approximately 1 in 10,000 persons. The clinical presentation of mastocytosis varies significantly, ranging from asymptomatic patients to a life-threatening disease with multiple organ involvement, potentially leading to cytopenia, malabsorption, hepatosplenomegaly, lymphadenopathy, ascites or osteolytic bone lesions with pathological fractures. Patients with mastocytosis may experience symptoms related to release of MC mediators, such as flushing or diarrhea or even more severe symptoms such as anaphylaxis. Recently, a new genetic trait, hereditary alpha tryptasemia (HaT), was described which involves a copy number variation in the TPSAB1-gene. Its role as standalone multisystem syndrome is heavily debated. There is emerging evidence suggesting there might be a link between HaT and due to the increased prevalence of HaT in patients with SM. The aim of this review is to provide a practical roadmap for diagnosis and management of mastocytosis and its associated entities, since there are still many misconceptions about these topics.Abbreviations: AdvSM: Advanced systemic mastocytosis; ASM: Aggressive systemic mastocytosis; aST: acute serum tryptase; BM: Bone marrow; BMM: Bone marrow mastocytosis; bST: baseline serum tryptase; CM: Cutaneous mastocytosis; DCM: Diffuse cutaneous mastocytosis; HVA: Hymenoptera venom allergy; HaT: Hereditary alpha tryptasemia; ISM: Indolent systemic mastocytosis; MC: Mast cell; MCA: Mast cell activation; MCAS: Mast cell activation syndrome; MCL: Mast cell leukemia; MIS: Mastocytosis in the skin; MMAS: Monoclonal mast cell activation syndrome; MPCM: Maculopapular cutaneous mastocytosis; SM: Systemic mastocytosis; SM-AHN: Systemic mastocytosis with associated hematological neoplasm; SSM: Smouldering systemic mastocytosis; VIT: Venom immunotherapy.
Subject(s)
Mastocytosis, Cutaneous , Mastocytosis, Systemic , Mastocytosis , Humans , Mastocytosis, Systemic/diagnosis , Mastocytosis, Systemic/genetics , Tryptases , DNA Copy Number Variations , Mastocytosis/diagnosis , Mastocytosis/genetics , Mastocytosis/therapy , Mastocytosis, Cutaneous/diagnosis , Mastocytosis, Cutaneous/pathologyABSTRACT
Background: Uncertainties remain about the molecular mechanisms governing clonal mast cell disorders (CMCD) and anaphylaxis. Objective: This study aims at comparing the burden, phenotype and behavior of mast cells (MCs) and basophils in patients with CMCD with wasp venom anaphylaxis (CMCD/WVA+), CMCD patients without anaphylaxis (CMCD/ANA-), patients with an elevated baseline serum tryptase (EBST), patients with wasp venom anaphylaxis without CMCD (WVA+) and patients with a non-mast cell haematological pathology (NMHP). Methods: This study included 20 patients with CMCD/WVA+, 24 with CMCD/ANA-, 19 with WVA+, 6 with EBST and 5 with NMHP. We immunophenotyped MCs and basophils and compared baseline serum tryptase (bST) and both total and venom specific IgE in the different groups. For basophil studies, 13 healthy controls were also included. Results: Higher levels of bST were found in CMCD patients with wasp venom anaphylaxis, CMCD patients without anaphylaxis and EBST patients. Total IgE levels were highest in patients with wasp venom anaphylaxis with and without CMCD. Bone marrow MCs of patients with CMCD showed lower CD117 expression and higher expression of CD45, CD203c, CD63, CD300a and FcεRI. Within the CMCD population, patients with wasp venom anaphylaxis showed a higher expression of FcεRI as compared to patients without anaphylaxis. Expression of MRGPRX2 on MCs did not differ between the study populations. Basophils are phenotypically and functionally comparable between the different patient populations. Conclusion: Patients with CMCD show an elevated burden of aberrant activated MCs with a significant overexpression of FcεRI in patients with a wasp venom anaphylaxis.
Subject(s)
Anaphylaxis , Mastocytosis , Anaphylaxis/metabolism , Bone Marrow , Humans , Immunoglobulin E/metabolism , Mast Cells/metabolism , Mastocytosis/metabolism , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, IgE/metabolism , Receptors, Neuropeptide/metabolism , Tryptases/metabolism , Wasp Venoms/metabolismABSTRACT
Thrombotic thrombocytopenic purpura (TTP) is a rare but potentially life-threatening thrombotic microangiopathy, characterized by disseminated thrombus formation in the microvasculature, causing severe organ failure. Immune-mediated TTP (iTTP) is occasionally described after vaccination, especially against viral agents. We report a case of a 38-year-old woman with a de novo iTTP after exposure to the mRNA-based anti-coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer-BioNTech. She presented with increased bruising and petechiae starting 2 weeks after receiving the first dose of the anti-COVID-19 vaccine. Laboratory data revealed a severe ADAMTS13-deficiency in combination with a very high autoantibody titer against ADAMTS13. She was successfully treated with plasma exchange, corticosteroids, rituximab, and caplacizumab. To our knowledge, this is the first case report of iTTP after mRNA-based COVID-19 vaccination in a previously TTP-naïve patient.
Subject(s)
COVID-19 , Purpura, Thrombotic Thrombocytopenic , ADAMTS13 Protein , Adult , COVID-19 Vaccines , Humans , RNA, Messenger/genetics , SARS-CoV-2 , VaccinationABSTRACT
BACKGROUND: Anaphylaxis is frequent in patients suffering from primary mast cell disorders (PMCDs). In patients without mastocytosis in the skin (MIS) and a baseline serum tryptase (bST) less than 30 ng/mL, the diagnosis of PMCD is challenging. In these patients, detection of the KIT D816V mutation in peripheral blood (PB) has been suggested as screening tool for a PMCD. OBJECTIVE: In this study, we investigated whether KIT D816V in PB can contribute to the decision to perform a bone marrow (BM) biopsy in patients with anaphylaxis without MIS and a bST less than 30 ng/mL. METHODS: We selected 74 patients with severe anaphylaxis without MIS and a bST less than 30 ng/mL. All underwent a BM biopsy. KIT D816V mutation was quantified in both PB and BM using digital droplet polymerase chain reaction (ddPCR). RESULTS: Diagnosis of a PMCD was established in 40 patients (54%). Median bST for patients with and without PMCD was, respectively, 9.5 ng/mL (range 4.2-27 ng/mL) and 4.9 ng/mL (range 2.2-20.3 ng/mL) (P <.001). KIT D816V in PB was detected in 16 out of 40 (40%) patients with PMCD. KIT D816V in BM was detected in 22 out of 40 (55%) patients with PMCD. CONCLUSIONS: In patients without MIS and a bST less than < 30 ng/mL who experience anaphylaxis, determination of KIT D816V mutation in PB is of limited help in deciding when to proceed to a BM biopsy. Therefore, KIT D816V in PB mutation analysis should be interpreted together with scoring tools to make a better assessment in identifying patients who should undergo BM biopsy.
Subject(s)
Anaphylaxis , Mastocytosis, Systemic , Mastocytosis , Anaphylaxis/diagnosis , Humans , Mast Cells , Mastocytosis, Systemic/diagnosis , Mastocytosis, Systemic/genetics , Mutation , Proto-Oncogene Proteins c-kit/geneticsABSTRACT
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most-and least-likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2-. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.
ABSTRACT
Dipeptide derivatives bearing various P2 residues and pyrrolidine derivatives as P1 mimics were evaluated in order to identify lead structures for the development of DPP8 and DPP9 inhibitors. Structure-activity-relationship data obtained in this way led to the preparation of a series of alpha-aminoacyl ((2S, 4S)-4-azido-2-cyanopyrrolidines). These compounds were shown to be nanomolar DPP8/9 inhibitors with modest overall selectivity toward DPP IV and DPP II.
Subject(s)
Dipeptidases/antagonists & inhibitors , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Chemistry, Pharmaceutical/methods , Dipeptides/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Lysine , Models, Chemical , Molecular Structure , Nitriles/chemistry , Peptides/chemistry , Pyrrolidines/chemistry , Structure-Activity RelationshipABSTRACT
The proline-specific dipeptidyl peptidases (DPPs) are emerging as a protease family with important roles in the regulation of signaling by peptide hormones. Inhibitors of DPPs have an intriguing, therapeutic potential, with clinical efficacy seen in patients with diabetes. Until now, only recombinant forms of DPP8 and DPP9 have been characterized. Their enzymatic activities have not been demonstrated in or purified from any natural source. Using several selective DPP inhibitors, we show that DPP activity, attributable to DPP8/9 is present in human PBMC. All leukocyte types tested (lymphocytes, monocytes, Jurkat, and U937 cells) were shown to contain similar DPP8/9-specific activities, and DPPII- and DPPIV-specific activities varied considerably. The results were confirmed by DPPIV/CD26 immunocapture experiments. Subcellular fractionation localized the preponderance of DPP8/9 activity to the cytosol and DPPIV in the membrane fractions. Using Jurkat cell cytosol as a source, a 30-fold, enriched DPP preparation was obtained, which had enzymatic characteristics closely related to the ones of DPP8 and/or -9, including inhibition by allo-Ile-isoindoline and affinity for immobilized Lys-isoindoline.
Subject(s)
Dipeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Leukocytes/immunology , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/pharmacology , Antibodies, Monoclonal/metabolism , Dipeptidases/antagonists & inhibitors , Dipeptidyl Peptidase 4/immunology , Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Enzyme Activation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Isoleucine/analogs & derivatives , Isoleucine/chemistry , Isoleucine/pharmacology , Molecular Conformation , Nitriles/chemistry , Nitriles/pharmacology , Organophosphonates/chemistry , Organophosphonates/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Stereoisomerism , Structure-Activity Relationship , VildagliptinABSTRACT
Dipeptide-derived compounds, bearing various P2 residues and a diaryl pyrrolidin-2-yl phosphonate at the P1 position, were evaluated as dipeptidyl peptidase 8 (DPP8) inhibitors. With these products, irreversible inhibition of DPP8 was observed. To obtain inhibitors with an improved activity and selectivity profile, a set of selected analogues containing a diaryl isoindolin-1-ylphosphonate at P1 was synthesized and evaluated. Within this latter series, compound 2e was shown to be a potent, irreversible inhibitor of DPP8, demonstrating very low affinity for DPP IV and DPP II.
Subject(s)
Dipeptidases/antagonists & inhibitors , Dipeptides/chemical synthesis , Isoindoles/chemical synthesis , Organophosphonates/chemical synthesis , Pyrrolidines/chemical synthesis , Dipeptidases/chemistry , Dipeptides/chemistry , Isoindoles/chemistry , Kinetics , Organophosphonates/chemistry , Pyrrolidines/chemistry , Structure-Activity RelationshipABSTRACT
An increasing number of biological processes appear to be regulated by Pro-specific N-terminal processing. The proline-specific dipeptidyl peptidases (DPPs) like DPPIV, fibroblast activation protein alpha (FAP), DPPII, DPP8 and DPP9, because of their preference for cleavage after X-Pro in vitro, are likely to be involved in many of these processes. These DPPs are emerging as an important protease family with roles in the regulation of signaling by peptide hormones. Dipeptidyl peptidase II (DPPII, E.C. 3.4.14.2) is an intracellular protease that localizes to the vesicular system. It releases, preferably at acidic pH, N-terminal dipeptides from oligopeptides with Pro or Ala in the penultimate position. Despite the fact that the physiological role of DPPII still has not been elucidated, several suggestions were made on possible functions of the enzyme depending on its localization in different cells, body fluids and organs. DPPII was a.o. suggested to be involved in the processes of cell differentiation and in the protection from cell death, and to have a role in the degradation of collagen fragments, myofibrillar proteins and short neuropeptides. Moreover, changes in the level and distribution of the enzyme provided clues indicating additional roles in disease-related processes. Here we review the DPPII literature, aiming to bring more clarity in the disperse data on this subject and give a state of the art on DPPII research.
Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Amino Acid Sequence , Apoptosis/physiology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid , Signal TransductionABSTRACT
Dipeptidyl peptidase (DPP) II (E.C. 3.4.14.2) is an intracellular protease that releases, preferably at acidic pH, N-terminal dipeptides from oligopeptides with Pro or Ala in the penultimate position. The natural substrates and the physiological role of DPPII remain unclear. The aim of the present study was to investigate the involvement of DPPII activity in different forms of cell death (apoptosis, necrosis and autophagy) in human leukocytes. We determined specific DPP activities in leukocytes. Compared to other subpopulations of peripheral blood mononuclear cells (PBMC), we observed relatively high DPPII specific activity in monocytic cells, opening new perspectives for further investigation of the DPPII functions. A second intriguing finding was that DPPII specific activity increased during necrosis, whereas induction of apoptosis or autophagy did not affect any of the dipeptidyl peptidase activities. Finally, we showed that inhibition of DPPII (>90%) using the in vitro applicable, highly potent (K(i) of 0.082+/-0.048 nM) and selective DPPII inhibitor UAMC00039, did not induce any form of cell death in leukocytes. These data are of importance for a more precise interpretation of the in vitro and in vivo effects of other dipeptidyl peptidase inhibitors.
Subject(s)
Apoptosis/physiology , Autophagy/physiology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Leukocytes, Mononuclear/enzymology , Necrosis/metabolism , Cell Line , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , U937 CellsABSTRACT
The presence of DPPII (dipeptidyl peptidase II; E.C. 3.4.14.2) has been demonstrated in various mammalian tissues. However, a profound molecular and catalytic characterization, including substrate selectivity, kinetics and pH-dependence, has not been conducted. In the present study, DPPII was purified from human seminal plasma to apparent homogeneity with a high yield (40%) purification scheme, including an inhibitor-based affinity chromatographic step. The inhibitor lysyl-piperidide (K(i) approximately 0.9 microM at pH 5.5) was chosen, as it provided a favourable affinity/recovery ratio. The human enzyme appeared as a 120 kDa homodimer. Mass spectrometric analysis after tryptic digestion together with a kinetic comparison indicate strongly its identity with QPP (quiescent cell proline dipeptidase), also called dipeptidyl peptidase 7. pH profiles of both kcat and kcat/K(m) clearly demonstrated that DPPII/QPP possesses an acidic and not a neutral optimum as was reported for QPP. Kinetic parameters of the human natural DPPII for dipeptide-derived chromogenic [pNA (p-nitroanilide)] and fluorogenic [4Me2NA (4-methoxy-2-naphthylamide)] substrates were determined under different assay conditions. DPPII preferred the chromogenic pNA-derived substrates over the fluorogenic 4Me2NA-derived substrates. Natural human DPPII showed high efficiency towards synthetic substrates containing proline at the P1 position and lysine at P2. The importance of the P1' group for P2 and P1 selectivity was revealed, explaining many discrepancies in the literature. Furthermore, substrate preferences of human DPPII and dipeptidyl peptidase IV were compared based on their selectivity constants (kcat/K(m)). Lys-Pro-pNA (k(cat)/K(m) 4.1x10(6) s(-1) x M(-1)) and Ala-Pro-pNA (kcat/K(m) 2.6x10(6) s(-1) x M(-1)) were found to be the most sensitive chromogenic substrates for human DPPII, but were less selective than Lys-Ala-pNA (kcat/K(m) 0.4x10(6) s(-1) x M(-1)).
Subject(s)
Dipeptidases/genetics , Dipeptides/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Amino Acid Sequence , Animals , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Stability , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mice , Molecular Sequence Data , Molecular Structure , Molecular Weight , Nanotechnology/methods , Rats , Recombinant Proteins/chemistry , Sequence Alignment/methods , Spectrometry, Mass, Electrospray Ionization/methods , Substrate SpecificityABSTRACT
The feasibility of the fluoro-olefin function as a peptidomimetic group in inhibitors for dipeptidyl peptidase IV and II (DPP IV and DPP II) is investigated by evaluation of N-substituted Gly-Psi[CF=C]pyrrolidines, Gly-Psi[CF=C]piperidines, and Gly-Psi[CF=C](2-cyano)pyrrolidines. Of this later class, the (Z)- and (E)-fluoro-olefin analogues were prepared and chemical stability in comparison with the parent amide was checked. Most of these compounds exhibited a strong binding preference toward DPP II with IC(50) values in the low micromolar range, while only low DPP IV inhibitory potential is seen.
Subject(s)
Alkenes/chemical synthesis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Alkenes/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Drug Stability , Models, Molecular , Nitriles/chemical synthesis , Nitriles/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Protease Inhibitors/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Stereoisomerism , Structure-Activity RelationshipABSTRACT
Vildagliptin (NVP-LAF237/(2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile) was described as a potent, selective and orally bio-available dipeptidyl-peptidase IV (DPP IV, EC 3.4.14.5) inhibitor [Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, et al.1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89]. Phase III clinical trials for the use of this compound in the treatment of Type 2 diabetes were started in the first quarter of 2004. In this paper, we report on (1) the kinetics of binding, (2) the type of inhibition, (3) the selectivity with respect to other peptidases, and (4) the inhibitory potency on the DPP IV catalyzed degradation of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and substance P. Vildagliptin behaved as a slow-binding DPP IV inhibitor with an association rate constant of 1.4x10(5)M(-1)s(-1) and a K(i) of 17nM. It is a micromolar inhibitor for dipeptidyl-peptidase 8 and does not significantly inhibit dipeptidyl-peptidase II (EC 3.4.11.2), prolyl oligopeptidase (EC 3.4.21.26), aminopeptidase P (EC 3.4.11.9) or aminopeptidase M (EC 3.4.11.2). There was no evidence for substrate specific inhibition of DPP IV by Vildagliptin or for important allosteric factors affecting the inhibition constant in presence of GIP and GLP-1.
Subject(s)
Adamantane/analogs & derivatives , Adamantane/pharmacology , Dipeptidyl Peptidase 4/drug effects , Protease Inhibitors/pharmacology , Binding Sites , Caco-2 Cells , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Humans , Kinetics , Nitriles , Pyrrolidines , Structure-Activity Relationship , Substrate Specificity , VildagliptinSubject(s)
Diamines/pharmacokinetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Piperidines/pharmacokinetics , Protease Inhibitors/pharmacokinetics , Animals , Diamines/administration & dosage , Diamines/chemistry , Diamines/toxicity , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Female , Guinea Pigs , Male , Mice , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Protease Inhibitors/administration & dosage , Protease Inhibitors/chemistry , Protease Inhibitors/toxicity , Rabbits , RatsABSTRACT
In this paper, we report the synthesis of diastereomerically pure N-(4-substituted-2,4-diaminobutanoyl)piperidines. These compounds were prepared to investigate the influence of the 4-substitution on the dipeptidyl peptidase II (DPP II) activity and selectivity of the parent N-(2,4-diaminobutanoyl)piperidine. The (4S)-methyl compound showed subnanomolar inhibition, comparable with the parent compound. The (4R)-methyl group or bigger substituents decreased the activity.