Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 15(1): 1312, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346978

ABSTRACT

Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.


Subject(s)
Cancer-Associated Fibroblasts , Ovarian Neoplasms , Female , Humans , Cancer-Associated Fibroblasts/metabolism , Microfilament Proteins/metabolism , Myofibroblasts/metabolism , Ovarian Neoplasms/pathology , Ovary/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Tumor Microenvironment
2.
Cancer Res ; 82(18): 3291-3306, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35862581

ABSTRACT

Tumor-associated macrophages (TAM) play a detrimental role in triple-negative breast cancer (TNBC). In-depth analysis of TAM characteristics and interactions with stromal cells, such as cancer-associated fibroblast (CAF), could provide important biological and therapeutic insights. Here we identify at the single-cell level a monocyte-derived STAB1+TREM2high lipid-associated macrophage (LAM) subpopulation with immune suppressive capacities that is expanded in patients resistant to immune checkpoint blockade (ICB). Genetic depletion of this LAM subset in mice suppressed TNBC tumor growth. Flow cytometry and bulk RNA sequencing data demonstrated that coculture with TNBC-derived CAFs led to reprogramming of blood monocytes towards immune suppressive STAB1+TREM2high LAMs, which inhibit T-cell activation and proliferation. Cell-to-cell interaction modeling and assays in vitro demonstrated the role of the inflammatory CXCL12-CXCR4 axis in CAF-myeloid cell cross-talk and recruitment of monocytes in tumor sites. Altogether, these data suggest an inflammation model whereby monocytes recruited to the tumor via the CAF-driven CXCL12-CXCR4 axis acquire protumorigenic LAM capacities to support an immunosuppressive microenvironment. SIGNIFICANCE: This work identifies a novel lipid-associated macrophage subpopulation with immune suppressive functions, offering new leads for therapeutic interventions in triple-negative breast cancer.


Subject(s)
Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Animals , Cancer-Associated Fibroblasts/pathology , Cell Adhesion Molecules, Neuronal , Cell Line, Tumor , Fibroblasts/pathology , Humans , Immune Checkpoint Inhibitors , Lipids , Macrophages , Mice , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics
3.
Cancers (Basel) ; 13(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884993

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAF) are heterogeneous with multiple functions in breast cancer. Recently, we identified a specific CAF subpopulation (referred to as CAF-S1), which promotes immunosuppression and immunotherapy resistance. METHODS AND RESULTS: Here, by studying a large collection of human samples, we highlight the key function of CD73/NT5E in CAF-S1-mediated immunosuppression in breast cancer. We first reveal that CD73 protein level specifically accumulates in CAF-S1 in breast cancer patients. Interestingly, infiltration of regulatory T lymphocytes (Tregs) is significantly correlated with CD73 expression in stroma but not in epithelium, indicating that CD73 contributes to immunosuppression when expressed in CAF-S1 and not in tumor cells. By performing functional assays based on relevant systems using primary CAF-S1 isolated from patients, we demonstrate that CAF-S1 increase the content in both PD-1+ and CTLA-4+ Tregs. Importantly, the use of a blocking anti-CD73 antibody on CAF-S1 reduces CAF-S1-mediated immunosuppression by preventing expression of these immune checkpoints on Tregs. CONCLUSIONS: Our data support the potential clinical benefit of using both anti-CD73 and immune-checkpoint inhibitors in breast cancer patients for inhibiting CAF-S1-mediated immunosuppression and enhancing anti-tumor immune response.

4.
Nat Commun ; 11(1): 404, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964880

ABSTRACT

Although fibroblast heterogeneity is recognized in primary tumors, both its characterization in and its impact on metastases remain unknown. Here, combining flow cytometry, immunohistochemistry and RNA-sequencing on breast cancer samples, we identify four Cancer-Associated Fibroblast (CAF) subpopulations in metastatic lymph nodes (LN). Two myofibroblastic subsets, CAF-S1 and CAF-S4, accumulate in LN and correlate with cancer cell invasion. By developing functional assays on primary cultures, we demonstrate that these subsets promote metastasis through distinct functions. While CAF-S1 stimulate cancer cell migration and initiate an epithelial-to-mesenchymal transition through CXCL12 and TGFß pathways, highly contractile CAF-S4 induce cancer cell invasion in 3-dimensions via NOTCH signaling. Patients with high levels of CAFs, particularly CAF-S4, in LN at diagnosis are prone to develop late distant metastases. Our findings suggest that CAF subset accumulation in LN is a prognostic marker, suggesting that CAF subsets could be examined in axillary LN at diagnosis.


Subject(s)
Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Lymphatic Metastasis/pathology , Myofibroblasts/metabolism , Adult , Aged , Aged, 80 and over , Axilla , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cancer-Associated Fibroblasts/pathology , Cell Proliferation , Cell Separation , Chemokine CXCL12/metabolism , Epithelial-Mesenchymal Transition , Female , Flow Cytometry , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lymph Nodes/cytology , Lymph Nodes/pathology , Middle Aged , Myofibroblasts/pathology , Neoplasm Invasiveness/pathology , Primary Cell Culture , Prognosis , Progression-Free Survival , Receptors, Notch/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
5.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30760554

ABSTRACT

Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.


Subject(s)
Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Natural Killer T-Cells/metabolism , Adult , Aged , Aged, 80 and over , Animals , CD4 Antigens/metabolism , Caco-2 Cells , Clone Cells/metabolism , Coculture Techniques , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/surgery , Crohn Disease/surgery , Cytokines/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Intestinal Mucosa/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Natural Killer T-Cells/immunology , Phenotype
6.
Nat Commun ; 9(1): 1056, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535360

ABSTRACT

High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying four subsets of carcinoma-associated fibroblasts (CAF-S1-4). Mesenchymal HGSOC show high content in CAF-S1 fibroblasts, which exhibit immunosuppressive functions by increasing attraction, survival, and differentiation of CD25+FOXP3+ T lymphocytes. The beta isoform of the CXCL12 chemokine (CXCL12ß) specifically accumulates in the immunosuppressive CAF-S1 subset through a miR-141/200a dependent-mechanism. Moreover, CXCL12ß expression in CAF-S1 cells plays a crucial role in CAF-S1 immunosuppressive activity and is a reliable prognosis factor in HGSOC, in contrast to CXCL12α. Thus, our data highlight the differential regulation of the CXCL12α and CXCL12ß isoforms in HGSOC, and reveal a CXCL12ß-associated stromal heterogeneity and immunosuppressive environment in mesenchymal HGSOC.


Subject(s)
Chemokine CXCL12/metabolism , Fibroblasts/metabolism , MicroRNAs/physiology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Fibroblasts/cytology , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Ovarian Neoplasms/genetics
7.
Cancer Cell ; 33(3): 463-479.e10, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29455927

ABSTRACT

Carcinoma-associated fibroblasts (CAF) are key players in the tumor microenvironment. Here, we characterize four CAF subsets in breast cancer with distinct properties and levels of activation. Two myofibroblastic subsets (CAF-S1, CAF-S4) accumulate differentially in triple-negative breast cancers (TNBC). CAF-S1 fibroblasts promote an immunosuppressive environment through a multi-step mechanism. By secreting CXCL12, CAF-S1 attracts CD4+CD25+ T lymphocytes and retains them by OX40L, PD-L2, and JAM2. Moreover, CAF-S1 increases T lymphocyte survival and promotes their differentiation into CD25HighFOXP3High, through B7H3, CD73, and DPP4. Finally, in contrast to CAF-S4, CAF-S1 enhances the regulatory T cell capacity to inhibit T effector proliferation. These data are consistent with FOXP3+ T lymphocyte accumulation in CAF-S1-enriched TNBC and show how a CAF subset contributes to immunosuppression.


Subject(s)
Fibroblasts/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Cell Differentiation/physiology , Cell Proliferation/physiology , Forkhead Transcription Factors/immunology , Humans , Immune Tolerance/immunology , Lymphocyte Activation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL