Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Org Chem ; 88(9): 5359-5367, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37029749

ABSTRACT

[4 + 4] and [2 + 2] cycloadditions are unique reactions since they form and deform cycloadducts under irradiation due to their inherent reversible nature. Whereas promising for the field of recycling, these reactions usually suffer from two major shortcomings: long reaction durations (hours) and the requirement of high-intensity light (∼100 W/cm2), typically at a short wavelength (<330 nm). We demonstrate several tetra-dentate catalysts that can overcome these fundamental limitations. Among them is a tin complex that enables 76% conversion within only 2 min of irradiation at 395 nm, much faster than the known ruthenium-based catalyst, under irradiation with light intensity two orders of magnitude lower than that reported in the literature. Due to the short photopolymerization time, low intensity (27 mW/cm2), and long UV light (395 nm), this unique complex opens new avenues for recycling three-dimensional printing products based on photopolymerization of cycloaddition reactions.

2.
Int J Mol Sci ; 25(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203506

ABSTRACT

The median survival time of patients with an aggressive brain tumor, glioblastoma, is still poor due to ineffective treatment. The discovery of androgen receptor (AR) expression in 56% of cases offers a potential breakthrough. AR antagonists, including bicalutamide and enzalutamide, induce dose-dependent cell death in glioblastoma and glioblastoma-initiating cell lines (GIC). Oral enzalutamide at 20 mg/kg reduces subcutaneous human glioblastoma xenografts by 72% (p = 0.0027). We aimed to further investigate the efficacy of AR antagonists in intracranial models of human glioblastoma. In U87MG intracranial models, nude mice administered Xtandi (enzalutamide) at 20 mg/kg and 50 mg/kg demonstrated a significant improvement in survival compared to the control group (p = 0.24 and p < 0.001, respectively), confirming a dose-response relationship. Additionally, we developed a newly reformulated version of bicalutamide, named "soluble bicalutamide (Bic-sol)", with a remarkable 1000-fold increase in solubility. This reformulation significantly enhanced bicalutamide levels within brain tissue, reaching 176% of the control formulation's area under the curve. In the U87MG intracranial model, both 2 mg/kg and 4 mg/kg of Bic-sol exhibited significant efficacy compared to the vehicle-treated group (p = 0.0177 and p = 0.00364, respectively). Furthermore, combination therapy with 8 mg/kg Bic-sol and Temozolomide (TMZ) demonstrated superior efficacy compared to either Bic-sol or TMZ as monotherapies (p = 0.00706 and p = 0.0184, respectively). In the ZH-161 GIC mouse model, the group treated with 8 mg/kg Bic-sol as monotherapy had a significantly longer lifespan than the groups treated with TMZ or the vehicle (p < 0.001). Our study demonstrated the efficacy of androgen receptor antagonists in extending the lifespan of mice with intracranial human glioblastoma, suggesting a promising approach to enhance patient outcomes in the fight against this challenging disease.


Subject(s)
Anilides , Benzamides , Glioblastoma , Nitriles , Phenylthiohydantoin , Tosyl Compounds , Humans , Animals , Mice , Glioblastoma/drug therapy , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Mice, Nude , Temozolomide/pharmacology
3.
J Am Chem Soc ; 143(2): 577-587, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33353293

ABSTRACT

Semiconductor nanocrystals are promising photocatalysts for a wide range of applications, ranging from alternative fuel generation to biomedical and environmental applications. This stems from their diverse properties, including flexible spectral tunability, stability, and photocatalytic efficiencies. Their functionality depends on the complex influence of multiple parameters, including their composition, dimensions, architecture, surface coating, and environmental conditions. A particularly promising direction for rapid adoption of these nanoparticles as photocatalysts is their ability to act as photoinitiators (PIs) for radical polymerization. Previous studies served to demonstrate the proof of concept for the use of quantum confined semiconductor nanocrystals as photoinitiators, coining the term Quantum PIs, and provided insights for their photocatalytic mechanism of action. However, these early reports suffered from low efficiencies while requiring purging with inert gases, use of additives, and irradiation by high light intensities with very long excitation durations, which limited their potential for real-life applications. The progress in nanocrystal syntheses and surface engineering has opened the way to the introduction of the next generation of Quantum PIs. Herein, we introduce the research area of nanocrystal photocatalysts, review their studies as Quantum PIs for radical polymerization, from suspension polymerization to novel printing, as well as in a new family of polymerization techniques, of reversible deactivation radical polymerization, and provide a forward-looking view for the challenges and prospects of this field.

4.
Langmuir ; 37(21): 6451-6458, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34008993

ABSTRACT

New ink compositions for direct ink writing (DIW) printing of hydrogels, combining superior rheological properties of cellulose nanocrystals (CNCs) and a water-compatible photoinitiator, are presented. Rapid fixation was achieved by photopolymerization induced immediately after the printing of each layer by 365 nm light for 5 s, which overcame the common height limitation in DIW printing of hydrogels, and enabled the fabrication of objects with a high aspect ratio. CNCs imparted a unique rheological behavior, which was expressed by orders of magnitude difference in viscosity between low and high shear rates and in rapid high shear recovery, without compromising ink printability. Compared to the literature, the presented printing compositions enable the use of low photoinitiator concentrations at a very short build time, 6.25 s/mm, and are also curable by 405 nm light, which is favorable for maintaining viability in bioinks.

5.
Nano Lett ; 20(9): 6598-6605, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32787154

ABSTRACT

Ordered mesoporous silica materials gain high interest because of their potential applications in catalysis, selective adsorption, separation, and controlled drug release. Due to their morphological characteristics, mainly the tunable, ordered nanometric pores, they can be utilized as supporting hosts for confined chemical reactions. Applications of these materials, however, are limited by structural design. Here, we present a new approach for the 3D printing of complex geometry silica objects with an ordered mesoporous structure by stereolithography. The process uses photocurable liquid compositions that contain a structure-directing agent, silica precursors, and elastomer-forming monomers that, after printing and calcination, form porous silica monoliths. The objects have extremely high surface area, 1900 m2/g, and very low density and are thermally and chemically stable. This work enables the formation of ordered porous objects having complex geometries that can be utilized in applications in both the industry and academia, overcoming the structural limitations associated with traditional processing methods.

6.
Chem Soc Rev ; 48(6): 1712-1740, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30569917

ABSTRACT

This review describes recent developments in the field of conductive nanomaterials and their application in 2D and 3D printed flexible electronics, with particular emphasis on inks based on metal nanoparticles and nanowires, carbon nanotubes, and graphene sheets. We present the basic properties of these nanomaterials, their stabilization in dispersions, formulation of conductive inks and formation of conductive patterns on flexible substrates (polymers, paper, textile) by using various printing technologies and post-printing processes. Applications of conductive nanomaterials for fabrication of various 2D and 3D electronic devices are also briefly discussed.

7.
Sensors (Basel) ; 20(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255882

ABSTRACT

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide-polymer composites.

8.
Chemistry ; 25(72): 16573-16581, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31556175

ABSTRACT

The electrophoretic deposition (EPD) of graphene-based materials on transparent substrates is highly potential for many applications. Several factors can determine the yield of the EPD process, such as applied voltage, deposition time and particularly the presence of dispersion additives (stabilisers) in the suspension solution. This study presents an additive-free EPD of graphene quantum dot (GQD) thin films on an indium tin oxide (ITO) glass substrate and studies the deposition mechanism with the variation of the applied voltage (10-50 V) and deposition time (5-25 min). It is found that due to the small size (≈3.9 nm) and high content of deprotonated carboxylic groups, the GQDs form a stable dispersion (zeta-potential of about -35 mV) without using additives. The GQD thin films can be deposited onto ITO with optimal surface morphology at 30 V in 5 min (surface roughness of approximately (3.1±1.3) nm). In addition, as-fabricated GQD thin films also possess some interesting physico-optical properties, such as a double-peak photoluminescence at about λ=417 and 439 nm, with approximately 98 % visible transmittance. This low-cost and eco-friendly GQD thin film is a promising material for various applications, for example, transparent conductors, supercapacitors and heat conductive films in smart windows.

9.
Mikrochim Acta ; 186(6): 370, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31119470

ABSTRACT

Two kinds of carbon-based nanozymes were constructed from the same precursor of zeolitic imidazolate framework-8 (ZIF-8) for O2•- determination. Hollow carbon cubic nanomaterial (labelled as HCC) was obtained by chemically etching ZIF-8 with tannic acid and a subsequent calcination. A porous carbon cubic nanomaterial (labelled as PCC) was prepared by directly pyrolysis. Then HCC and PCC were immobilized on the surface of screen printed carbon electrodes (SPCE), fabricating HCC and PCC modified electrodes (denoted as HCC/SPCE and PCC/SPCE). HCC/SPCE, best operated at -0.5 V (vs. Ag/AgCl), has a sensitivity of 6.55 × 102 nA µM-1 cm-2 with a detection limit of 207 nM (at S/N = 3) for O2•- sensing. And PCC/SPCE, best operated at -0.4 V (vs. Ag/AgCl), exhibited a superior performance for O2•- detection with a sensitivity of 1.14 × 103 nA µM-1 cm-2 and a low detection limit of 140 nM (at S/N = 3). The two sensors possess excellent reproducibility and stability. They were used to sense O2•- released from HeLa cells. Graphical abstract Illustration of the synthesis of the hollow carbon cubic nanomaterial (HCC) and of the porous carbon cubic nanomaterial (PCC), and the scheme for detection of superoxide anions in HeLa cell.


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Nanostructures/chemistry , Superoxides/analysis , Electrochemical Techniques/instrumentation , Electrodes , HeLa Cells , Humans , Limit of Detection , Oxidation-Reduction , Reproducibility of Results , Singlet Oxygen/chemistry , Superoxides/metabolism , Zeolites/chemistry , Zymosan/pharmacology
10.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29134772

ABSTRACT

The field of printed electronics is continually trying to reduce the dimensions of the electrical components. Here, a method of printing metallic lines with widths as small as 15 nm and up to a few micrometers using fountain pen nanolithography (FPN) is shown. The FPN technique is based on a bent nanopipette with atomic force feedback that acts similar to a nanopen. The geometry of the nanopen allows for rapid placement accuracy of the printing tip, on any desired location, with the highest of optical sub-micrometer resolution. Using this nanopen, investigations of various inks are undertaken together with instrumental and script-tool development that allows accurate printing of multiple layers. This has led to the printing of conductive lines using inks composed of silver nanoparticles and salt solutions of silver and copper. In addition, it is shown that the method can be applied to substrates of various materials with minimal effect on the dimension of the line. The line widths are varied by using nanopens with different orifices or by tailoring the wetting properties of the ink on the substrate. Metallic interconnections of conducting lines are reported.

11.
Surg Endosc ; 32(2): 963-970, 2018 02.
Article in English | MEDLINE | ID: mdl-28779247

ABSTRACT

BACKGROUND: Iatrogenic ureteral injury is an increasing concern in the laparoscopic era, affecting both patient morbidity and costs. Current techniques enabling intraoperative ureteral identification require invasive procedures or radiations. Our aim was to develop a real-time, non-invasive, radiation-free method to visualize ureters, based on near-infrared (NIR) imaging. For this purpose, we interfered with the biliary excretion pathway of the indocyanine green (ICG) fluorophore by loading it into liposomes, enabling renal excretion. In this work, we studied various parameters influencing ureteral imaging. METHODS: Fluorescence intensity (FI) of various liposomal ICG sizes and doses were characterized in vitro and subsequently tested in vivo in mice and pigs. Quantification was performed by measuring FI in multiple points and applying the ureteral/retroperitoneum ratio (U/R). RESULTS: The optimal liposomal ICG loading dose was 20%, for the different liposomes' sizes tested (30, 60, 100 nm). Higher concentration of ICG decreased FI. In vivo, the optimal liposome size for ureteral imaging was 60 nm, which yielded a U/R of 5.2 ± 1.7 (p < 0.001 vs. free ICG). The optimal ICG dose was 8 mg/kg (U/R = 2.1 ± 0.4, p < 0.05 vs. 4 mg/kg). Only urine after liposomal ICG injection had a measurable FI, and not after free ICG injection. Using a NIR-optimized laparoscopic camera, ureters could be effectively imaged in pigs, from 10 min after injection and persisting for at least 90 min. Ureteral peristaltic waves could be clearly identified only after liposomal ICG injection. CONCLUSIONS: Optimization of liposomal ICG allowed to visualize enhanced ureters in animal models and seems a promising fluorophore engineering, which calls for further developments.


Subject(s)
Fluorescent Dyes/administration & dosage , Indocyanine Green/administration & dosage , Optical Imaging/methods , Ureter/diagnostic imaging , Animals , Female , Liposomes , Male , Mice , Spectroscopy, Near-Infrared , Swine
12.
Nano Lett ; 17(7): 4497-4501, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28617606

ABSTRACT

Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

13.
Neurobiol Dis ; 108: 140-147, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28847567

ABSTRACT

We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD.


Subject(s)
Creutzfeldt-Jakob Syndrome/drug therapy , Plant Oils/administration & dosage , Protective Agents/administration & dosage , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , Brain/pathology , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Disease Progression , Glycosaminoglycans/metabolism , Mice, Transgenic , Oxidation-Reduction/drug effects , Pregnancy Proteins/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Severity of Illness Index , Survival Analysis
14.
Small ; 13(36)2017 09.
Article in English | MEDLINE | ID: mdl-28722273

ABSTRACT

Vanadium dioxide (VO2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τc ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τc , low luminous transmittance (Tlum ), and undesirable solar modulation ability (ΔTsol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO2 . This Review focuses on hydrothermal synthesis, physical properties of VO2 polymorphs, and their transformation to thermochromic VO2 (M), and discusses the advantages, challenges, and prospects of VO2 (M) in energy-efficient smart windows application.

15.
Nano Lett ; 16(3): 1517-22, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26789406

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are considered pivotal components for molecular electronics. Techniques for SWCNT lithography today lack simplicity, flexibility, and speed of direct, oriented deposition at specific target locations. In this paper SWCNTs are directly drawn and placed with chemical identification and demonstrated orientation using fountain pen nanolithography (FPN) under ambient conditions. Placement across specific electrical contacts with such alignment is demonstrated and characterized. The fundamental basis of the drawing process with alignment has potential applications for other related systems such as inorganic nanotubes, polymers, and biological molecules.

16.
Surg Innov ; 24(2): 139-144, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28152672

ABSTRACT

BACKGROUND: Tumor localization may pose a significant challenge during minimally invasive rectal resection. Near-infrared (NIR) imaging can penetrate biological tissue and afford tumor localization from the external surface of the rectum. Our aim was to develop an NIR-based tool for rectal tumor imaging that can be administered intravenously. METHODS: We prepared indocyanine-green (ICG)-loaded liposomes by sonication. Liposomes were evaluated for their size and morphology. We then used an endoscopically induced rectal cancer in mice as a model for rectal cancer. After intravenous administration, tumors were evaluated for their fluorescence intensity. Tumor intensity was expressed in relation to the background signal, that is, tumor to background ratio (TBR). RESULTS: Liposomes in various sizes could be prepared by adjusting sonication time. We selected 100-nm-sized liposomes for further experiments. Transmission electron microscopy showed spherical particles and confirmed the size measurements. The liposomes could be lyophilized and then rehydrated again before use without compromising their structure or signal. Fluorescence intensity was kept for 24 hours after solubilization. Testing the optimal time course for rectal tumor imaging revealed that early time course (up to 3 hours) yielded nonspecific imaging, whereas after long time course (24 hours), a very weak signal remained in the tissue. The optimal time window for imaging was after 12 hours from injection, with TBR = 8.1 ± 3.6 ( P = .002). Free ICG could not achieve similar results. CONCLUSIONS: The liposomal ICG can be reproducibly prepared and kept in lyophilized form. Liposomal ICG could serve as a tool for intraoperative tumor localization.


Subject(s)
Indocyanine Green/therapeutic use , Laparoscopy/methods , Liposomes/therapeutic use , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Surgery, Computer-Assisted/methods , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Spectroscopy, Near-Infrared
17.
Nanomedicine ; 12(5): 1335-45, 2016 07.
Article in English | MEDLINE | ID: mdl-26964483

ABSTRACT

Correct localization of epileptic foci can improve surgical outcome in patients with drug-resistant seizures. Our aim was to demonstrate that systemically injected nanoparticles identify activated immune cells, which have been reported to accumulate in epileptogenic brain tissue. Fluorescent and magnetite-labeled nanoparticles were injected intravenously to rats with lithium-pilocarpine-induced chronic epilepsy. Cerebral uptake was studied ex vivo by confocal microscopy and MRI. Cellular uptake and biological effects were characterized in vitro in murine monocytes and microglia cell lines. Microscopy confirmed that the nanoparticles selectively accumulate within myeloid cells in the hippocampus, in association with inflammation. The nanoparticle signal was also detectable by MRI. The in vitro studies demonstrate rapid nanoparticle uptake and good cellular tolerability. We show that nanoparticles can target myeloid cells in epileptogenic brain tissue. This system can contribute to pre-surgical and intra-surgical localization of epileptic foci, and assist in detecting immune system involvement in epilepsy.


Subject(s)
Brain , Epilepsy/surgery , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles , Animals , Hippocampus , Humans , Inflammation , Mice , Microscopy, Confocal , Rats
18.
Opt Express ; 23(3): A124-32, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836239

ABSTRACT

This study presents a novel approach towards achieving high luminous transmittance (T(lum)) for vanadium dioxide (VO(2)) thermochromic nanogrid films whilst maintaining the solar modulation ability (ΔT(sol)). The perforated VO(2)-based films employ orderly-patterned nano-holes, which are able to favorably transmit visible light dramatically but retain large near-infrared modulation, thereby enhancing ΔT(sol). Numerical optimizations using parameter search algorithms have implemented through a series of Finite Difference Time Domain (FDTD) simulations by varying film thickness, cell periodicity, grid dimensions and variations of grid arrangement. The best performing results of T(lum) (76.5%) and ΔT(sol) (14.0%) are comparable, if not superior, to the results calculated from nanothermochromism, nanoporosity and biomimic nanostructuring. It opens up a new approach for thermochromic smart window applications.

19.
Nanomedicine ; 11(5): 1057-64, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25791809

ABSTRACT

Intraoperative ureter identification can assist in the prevention of ureteral injury and consequently improve surgery outcomes. Our aim was to take advantage of the altered pharmacokinetics of liposomal indocyanine green (ICG), the only FDA-approved near-infrared (NIR) dye, for imaging of ureters during surgeries. ICG was passively adsorbed to liposomes. NIR whole mice body and isolated tissue imaging were used to study liposomal ICG properties vs. free ICG. In vivo, the urinary bladder could be clearly observed in most of the liposome-treated mice. Liposomal encapsulation of ICG enhanced ureteral emission up to 1.9 fold compared to free ICG (P<0.01). Increase in liposomal micropolarity and microviscosity and differential scanning calorimetry supported ICG localization within the liposomal bilayer. Our findings suggest that liposomal ICG could be utilized for ureteral imaging intra-operatively, thus potentially improving surgical outcomes. FROM THE CLINICAL EDITOR: Iatrogenic ureteral injury is a serious complication of abdominal surgery and intra-operative recognition of the ureters is usually the best method of injury prevention. In this article, the authors developed liposomal indocyanine green, which could be excreted via the urinary system and investigated its in-vivo use in mice.


Subject(s)
Coloring Agents/administration & dosage , Indocyanine Green/administration & dosage , Optical Imaging/methods , Ureter/pathology , Urinary Bladder/pathology , Animals , Coloring Agents/pharmacokinetics , Female , Indocyanine Green/pharmacokinetics , Infrared Rays , Liposomes , Mice , Ureter/injuries , Urinary Bladder/injuries
20.
Molecules ; 20(10): 18526-38, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26473816

ABSTRACT

Titanium(IV) complexes exhibit high potential as anti-tumor agents, particularly due to their low intrinsic toxicity and cytotoxicity toward cisplatin resistant cells. Nevertheless, Ti(IV) complexes generally undergo rapid hydrolysis that previously hampered their utilization as anticancer drugs. We recently overcame this difficulty by developing a highly stable Ti(IV) complex that is based on tetra-phenolato, hexadentate ligand, formulated into organic nanoparticles. Herein we investigated the activity of this complex in vitro and in vivo. Although inactive when tested directly due to poor solubility, when formulated, this complex displayed (a) high cytotoxicity toward cisplatin resistant human ovarian cells, A2780-cp, with resistance factor of 1.1; (b) additive behavior in combination with cisplatin toward ovarian and colon cancer cells; (c) selectivity toward cancer cells as implied by its mild activity toward non-cancerous, fibroblast lung cells, MRC-5; (d) high stability and durability as manifested by the ability to maintain cytotoxicity, even following one week of incubation in 100% aquatic medium solution; and (e) in vivo efficacy toward solid tumors of human colon cancer cells, HT-29, in nude mice without any clinical signs of toxicity. These features support the formulated phenolato Ti(IV) complex being an effective and selective anti-tumoral agent.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/chemical synthesis , Colonic Neoplasms/drug therapy , Coordination Complexes/chemical synthesis , Metal Nanoparticles/chemistry , Titanium/chemistry , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cisplatin/pharmacology , Colonic Neoplasms/pathology , Coordination Complexes/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Stability , Drug Synergism , Female , Fibroblasts/cytology , Fibroblasts/drug effects , HT29 Cells , Humans , Metal Nanoparticles/therapeutic use , Mice , Mice, Nude , Organ Specificity , Phenols/chemistry , Titanium/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL