Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531685

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5,757 participants reported 17,572 Ag-RDT results and completed 12,674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR-positive. Overall sensitivity and specificity were 53.0% (95% CI: 49.6-56.4%) and 98.8% (98.5-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4 to 7 days post-symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSION: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high-risk for SARS-CoV-2 infection.

2.
J Gen Intern Med ; 35(11): 3302-3307, 2020 11.
Article in English | MEDLINE | ID: mdl-32875494

ABSTRACT

BACKGROUND: Skilled nursing facilities (SNFs) are high-risk settings for SARS-CoV-2 transmission. Infection rates among employees are infrequently described. OBJECTIVE: To describe SARS-CoV-2 rates among SNF employees and residents during a non-outbreak time period, we measured cross-sectional SARS-CoV-2 prevalence across multiple sites in the Seattle area. DESIGN: SARS-CoV-2 testing was performed for SNF employees and residents using quantitative real-time reverse transcription polymerase chain reaction. A subset of employees completed a sociodemographic and symptom questionnaire. PARTICIPANTS: Between March 29 and May 13, 2020, we tested 1583 employees and 1208 residents at 16 SNFs for SARS-CoV-2. MAIN MEASURE: SARS-CoV-2 testing results and symptom report among employees and residents. KEY RESULTS: Eleven of the 16 SNFs had one or more resident or employee test positive. Overall, 46 (2.9%) employees had positive or inconclusive testing for SARS-CoV-2, and among those who completed surveys, most were asymptomatic and involved in direct patient care. The majority of employees tested were female (934, 73%), and most employees were Asian (392, 30%), Black (360, 28%), or white (360, 28%). Among the 1208 residents tested, 110 (9.1%) had positive or inconclusive results. There was no association between the presence of positive residents and positive employees within a SNF (p = 0.62, McNemar's test). CONCLUSIONS: In the largest study of SNFs to date, SARS-CoV-2 infections were detected among both employees and residents. Employees testing positive were often asymptomatic and involved in direct patient care. Surveillance testing is needed for SNF employees and residents during the pandemic response.


Subject(s)
COVID-19 Testing/methods , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Skilled Nursing Facilities/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Testing/statistics & numerical data , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Occupational Diseases/epidemiology , Prevalence , SARS-CoV-2 , Skilled Nursing Facilities/organization & administration , Surveys and Questionnaires , Washington/epidemiology , Young Adult
3.
Nat Commun ; 13(1): 5240, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068236

ABSTRACT

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Genome, Viral/genetics , Genomics , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Universities
4.
Cell Rep ; 35(8): 109164, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33991511

ABSTRACT

A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.


Subject(s)
COVID-19/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Binding Sites, Antibody , COVID-19/virology , Cell Surface Display Techniques , Coronavirus/immunology , Cross Reactions , Female , HEK293 Cells , Humans , Immunity , Male , Middle Aged , Nucleocapsid Proteins/immunology , Polyproteins/immunology , Serology , Young Adult
5.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34805425

ABSTRACT

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL