Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Am J Med Genet A ; 173(5): 1390-1395, 2017 May.
Article in English | MEDLINE | ID: mdl-28371217

ABSTRACT

We report a family in which two brothers had an undiagnosed genetic disorder comprised of dysmorphic features, microcephaly, severe intellectual disability (non-verbal), mild anemia, and cryptorchidism. Both developed osteosarcoma. Trio exome sequencing (using blood samples from the younger brother and both parents) was performed and a nonsense NM_000489.4:c.7156C>T (p.Arg2386*) mutation in the ATRX gene was identified in the proband (hemizygous) and in the mother's peripheral blood DNA (heterozygous). The mother is healthy, does not exhibit any clinical manifestations of ATR-X syndrome and there was no family history of cancer. The same hemizygous pathogenic variant was confirmed in the affected older brother's skin tissue by subsequent Sanger sequencing. Chromosomal microarray studies of both brothers' osteosarcomas revealed complex copy number alterations consistent with the clinical diagnosis of osteosarcoma. Recently, somatic mutations in the ATRX gene have been observed as recurrent alterations in both osteosarcoma and brain tumors. However, it is unclear if there is any association between osteosarcoma and germline ATRX mutations, specifically in patients with constitutional ATR-X syndrome. This is the first report of osteosarcoma diagnosed in two males with ATR-X syndrome, suggesting a potential increased risk for cancer in patients with this disorder.


Subject(s)
DNA Helicases/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Nuclear Proteins/genetics , Osteosarcoma/genetics , alpha-Thalassemia/genetics , Adolescent , Adult , Base Sequence , Exome/genetics , Female , Germ-Line Mutation , Heterozygote , Humans , Intellectual Disability/complications , Intellectual Disability/physiopathology , Male , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/physiopathology , Osteosarcoma/complications , Osteosarcoma/physiopathology , Pedigree , Siblings , X-linked Nuclear Protein , alpha-Thalassemia/complications , alpha-Thalassemia/physiopathology
3.
J Mol Diagn ; 26(5): 337-348, 2024 May.
Article in English | MEDLINE | ID: mdl-38360210

ABSTRACT

Several in silico annotation-based methods have been developed to prioritize variants in exome sequencing analysis. This study introduced a novel metric Significance Associated with Phenotypes (SAP) score, which generates a statistical score by comparing an individual's observed phenotypes against existing gene-phenotype associations. To evaluate the SAP score, a retrospective analysis was performed on 219 exomes. Among them, 82 family-based and 35 singleton exomes had at least one disease-causing variant that explained the patient's clinical features. SAP scores were calculated, and the rank of the disease-causing variant was compared with a known method, Exomiser. Using the SAP score, the known causative variant was ranked in the top 10 retained variants for 94% (77 of 82) of the family-based exomes and in first place for 73% of these cases. For singleton exomes, the SAP score analysis ranked the known pathogenic variants within the top 10 for 80% (28 of 35) of cases. The SAP score, which is independent of detected variants, demonstrates comparable performance with Exomiser, which considers both phenotype and variant-level evidence simultaneously. Among 102 cases with negative results or variants of uncertain significance, SAP score analysis revealed two cases with a potential new diagnosis based on rank. The SAP score, a phenotypic quantitative metric, can be used in conjunction with standard variant filtration and annotation to enhance variant prioritization in exome analysis.


Subject(s)
Databases, Genetic , Genetic Testing , Humans , Exome Sequencing , Retrospective Studies , Phenotype
4.
PLoS Pathog ; 6(7): e1001013, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20661424

ABSTRACT

Epigenetic modifications of the herpesviral genome play a key role in the transcriptional control of latent and lytic genes during a productive viral lifecycle. In this study, we describe for the first time a comprehensive genome-wide ChIP-on-Chip analysis of the chromatin associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) genome during latency and lytic reactivation. Depending on the gene expression class, different combinations of activating [acetylated H3 (AcH3) and H3K4me3] and repressive [H3K9me3 and H3K27me3] histone modifications are associated with the viral latent genome, which changes upon reactivation in a manner that is correlated with their expression. Specifically, both the activating marks co-localize on the KSHV latent genome, as do the repressive marks. However, the activating and repressive histone modifications are mutually exclusive of each other on the bulk of the latent KSHV genome. The genomic region encoding the IE genes ORF50 and ORF48 possesses the features of a bivalent chromatin structure characterized by the concomitant presence of the activating H3K4me3 and the repressive H3K27me3 marks during latency, which rapidly changes upon reactivation with increasing AcH3 and H3K4me3 marks and decreasing H3K27me3. Furthermore, EZH2, the H3K27me3 histone methyltransferase of the Polycomb group proteins (PcG), colocalizes with the H3K27me3 mark on the entire KSHV genome during latency, whereas RTA-mediated reactivation induces EZH2 dissociation from the genomic regions encoding IE and E genes concurrent with decreasing H3K27me3 level and increasing IE/E lytic gene expression. Moreover, either the inhibition of EZH2 expression by a small molecule inhibitor DZNep and RNAi knockdown, or the expression of H3K27me3-specific histone demethylases apparently induced the KSHV lytic gene expression cascade. These data indicate that histone modifications associated with the KSHV latent genome are involved in the regulation of latency and ultimately in the control of the temporal and sequential expression of the lytic gene cascade. In addition, the PcG proteins play a critical role in the control of KSHV latency by maintaining a reversible heterochromatin on the KSHV lytic genes. Thus, the regulation of the spatial and temporal association of the PcG proteins with the KSHV genome may be crucial for propagating the KSHV lifecycle.


Subject(s)
Chromatin/genetics , Epigenesis, Genetic , Genome, Viral , Herpesvirus 8, Human/genetics , Virus Latency/genetics , Cell Line , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Histones/metabolism , Humans , Immediate-Early Proteins/genetics
5.
Mitochondrion ; 67: 6-14, 2022 11.
Article in English | MEDLINE | ID: mdl-36115539

ABSTRACT

Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.


Subject(s)
DNA, Mitochondrial , Sarcoma, Ewing , Humans , Child , DNA, Mitochondrial/genetics , Haplotypes , Sarcoma, Ewing/genetics , Black People , Mitochondria/genetics
6.
medRxiv ; 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33619507

ABSTRACT

Background: In the US, community circulation of the SARS-CoV-2 virus likely began in February 2020 after mostly travel-related cases. Children's Hospital of Philadelphia began testing on 3/9/2020 for pediatric and adult patients, and for all admitted patients on 4/1/2020, allowing an early glimpse into the local molecular epidemiology of the virus. Methods: We obtained 169 SARS-CoV-2 samples (83 from patients <21 years old) from March through May and produced whole genome sequences. We used genotyping tools to track variants over time and to test for possible genotype associated clinical presentations and outcomes in children. Results: Our analysis uncovered 13 major lineages that changed in relative abundance as cases peaked in mid-April in Philadelphia. We detected at least 6 introductions of distinct viral variants into the population. As a group, children had more diverse virus genotypes than the adults tested. No strong differences in clinical variables were associated with genotypes. Conclusions: Whole genome analysis revealed unexpected diversity, and distinct circulating viral variants within the initial peak of cases in Philadelphia. Most introductions appeared to be local from nearby states. Although limited by sample size, we found no evidence that different genotypes had different clinical impacts in children in this study.

7.
Open Forum Infect Dis ; 8(6): ofaa551, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34095334

ABSTRACT

BACKGROUND: The full spectrum of the disease phenotype and viral genotype of coronavirus disease 2019 (COVID-19) have yet to be thoroughly explored in children. Here, we analyze the relationships between viral genetic variants and clinical characteristics in children. METHODS: Whole-genome sequencing was performed on respiratory specimens collected for all SARS-CoV-2-positive children (n = 141) between March 13 and June 16, 2020. Viral genetic variations across the SARS-CoV-2 genome were identified and investigated to evaluate genomic correlates of disease severity. RESULTS: Higher viral load was detected in symptomatic patients (P = .0007) and in children <5 years old (P = .0004). Genomic analysis revealed a mean pairwise difference of 10.8 single nucleotide variants (SNVs), and the majority (55.4%) of SNVs led to an amino acid change in the viral proteins. The D614G mutation in the spike protein was present in 99.3% of the isolates. The calculated viral mutational rate of 22.2 substitutions/year contrasts the 13.5 substitutions/year observed in California isolates without the D614G mutation. Phylogenetic clade 20C was associated with severe cases of COVID-19 (odds ratio, 6.95; P = .0467). Epidemiological investigation revealed major representation of 3 of 5 major Nextstrain clades (20A, 20B, and 20C) consistent with multiple introductions of SARS-CoV-2 in Southern California. CONCLUSIONS: Genomic evaluation demonstrated greater than expected genetic diversity, presence of the D614G mutation, increased mutation rate, and evidence of multiple introductions of SARS-CoV-2 into Southern California. Our findings suggest a possible association of phylogenetic clade 20C with severe disease, but small sample size precludes a definitive conclusion. Our study warrants larger and multi-institutional genomic evaluation and has implications for infection control practices.

8.
medRxiv ; 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33688673

ABSTRACT

Background: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. Methods: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. Findings: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. Interpretation: Our results highlight the need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered. Funding: The work was partially funded by The Saban Research Institute at Children's Hospital Los Angeles intramural support for COVID-19 Directed Research (X.G. and J.D.B.), the Johns Hopkins Center of Excellence in Influenza Research and Surveillance HHSN272201400007C (A.P.), NIH/NIAID R01AI127877 (S.D.B.), NIH/NIAID R01AI130398 (S.D.B.), NIH 1U54CA260517 (S.D.B.), an endowment to S.D.B. from the Crown Family Foundation, an Early Postdoc.Mobility Fellowship Stipend to O.F.W. from the Swiss National Science Foundation (SNSF), and a Coulter COVID-19 Rapid Response Award to S.D.B. L.G. is a SHARE Research Fellow in Pediatric Hematology-Oncology.

9.
EBioMedicine ; 67: 103355, 2021 May.
Article in English | MEDLINE | ID: mdl-33915337

ABSTRACT

BACKGROUND: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. METHODS: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. FINDINGS: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. INTERPRETATION: Our results highlight the potential need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered.


Subject(s)
COVID-19/immunology , Immune Evasion , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , SARS-CoV-2/genetics , COVID-19/virology , Child, Preschool , Evolution, Molecular , Female , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Immunity, Humoral , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Sequence Analysis, RNA , Whole Genome Sequencing , Young Adult
10.
Article in English | MEDLINE | ID: mdl-30755392

ABSTRACT

Advancing the clinical utility of whole-exome sequencing (WES) for patients with suspected genetic disorders is largely driven by bioinformatics approaches that streamline data processing and analysis. Herein, we describe our experience with implementing a semiautomated and phenotype-driven WES diagnostic workflow, incorporating both the DRAGEN pipeline and the Exomiser variant prioritization tool, at an academic children's hospital with an ethnically diverse pediatric patient population. We achieved a 41% molecular diagnostic rate for 66 duo-, quad-, or trio-WES cases, and 28% for 40 singleton-WES cases. Preliminary results were returned to ordering physicians within 1 wk for 12 of 38 (32%) probands with positive findings, which were instrumental in guiding the appropriate clinical management for a variety of patients, especially in critical care settings. The semiautomated and streamlined WES workflow also enabled us to identify novel variants in candidate disease genes in patients with developmental delay and autism and immune disorders and cancer, including ANK2, BPTF, BCL11A, FOXN1, PLAA, ATRX, DNAJC21, and RAD50 Together, we demonstrated the implementation of a streamlined WES workflow that was successfully applied for both clinical and research purposes.


Subject(s)
Autism Spectrum Disorder/diagnosis , Exome Sequencing/methods , Immune System Diseases/diagnosis , Neoplasms/diagnosis , Adolescent , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Early Diagnosis , Female , Genetic Predisposition to Disease , Humans , Immune System Diseases/genetics , Infant , Infant, Newborn , Male , Neoplasms/genetics , Sensitivity and Specificity , Time Factors , Workflow , Young Adult
11.
J Mol Diagn ; 20(6): 765-776, 2018 11.
Article in English | MEDLINE | ID: mdl-30138724

ABSTRACT

The OncoKids panel is an amplification-based next-generation sequencing assay designed to detect diagnostic, prognostic, and therapeutic markers across the spectrum of pediatric malignancies, including leukemias, sarcomas, brain tumors, and embryonal tumors. This panel uses low input amounts of DNA (20 ng) and RNA (20 ng) and is compatible with formalin-fixed, paraffin-embedded and frozen tissue, bone marrow, and peripheral blood. The DNA content of this panel covers the full coding regions of 44 cancer predisposition loci, tumor suppressor genes, and oncogenes; hotspots for mutations in 82 genes; and amplification events in 24 genes. The RNA content includes 1421 targeted gene fusions. We describe the validation of this panel by using a large cohort of 192 unique clinical samples that included a wide range of tumor types and alterations. Robust performance was observed for analytical sensitivity, reproducibility, and limit of detection studies. The results from this study support the use of OncoKids for routine clinical testing of a wide variety of pediatric malignancies.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Child , Gene Amplification , Humans , INDEL Mutation/genetics , Limit of Detection , Oncogene Fusion , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Sensitivity and Specificity
12.
BMC Med Genomics ; 10(1): 57, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28985730

ABSTRACT

BACKGROUND: With 15,949 markers, the low-density Infinium QC Array-24 BeadChip enables linkage analysis, HLA haplotyping, fingerprinting, ethnicity determination, mitochondrial genome variations, blood groups and pharmacogenomics. It represents an attractive independent QC option for NGS-based diagnostic laboratories, and provides cost-efficient means for determining gender, ethnic ancestry, and sample kinships, that are important for data interpretation of NGS-based genetic tests. METHODS: We evaluated accuracy and reproducibility of Infinium QC genotyping calls by comparing them with genotyping data of the same samples from other genotyping platforms, whole genome/exome sequencing. Accuracy and robustness of determining gender, provenance, and kinships were assessed. RESULTS: Concordance of genotype calls between Infinium QC and other platforms was above 99%. Here we show that the chip's ancestry informative markers are sufficient for ethnicity determination at continental and sometimes subcontinental levels, with assignment accuracy varying with the coverage for a particular region and ethnic groups. Mean accuracies of provenance prediction at a regional level were varied from 81% for Asia, to 89% for Americas, 86% for Africa, 97% for Oceania, 98% for Europe, and 100% for India. Mean accuracy of ethnicity assignment predictions was 63%. Pairwise concordances of AFR samples with the samples from any other super populations were the lowest (0.39-0.43), while the concordances within the same population were relatively high (0.55-0.61). For all populations except African, cross-population comparisons were similar in their concordance ranges to the range of within-population concordances (0.54-0.57). Gender determination was correct in all tested cases. CONCLUSIONS: Our results indicate that the Infinium QC Array-24 chip is suitable for cost-efficient, independent QC assaying in the settings of an NGS-based molecular diagnostic laboratory; hence, we recommend its integration into the standard laboratory workflow. Low-density chips can provide sample-specific measures for variant call accuracy, prevent sample mix-ups, validate self-reported ethnicities, and detect consanguineous cases. Integration of low-density chips into QC procedures aids proper interpretation of candidate sequence variants. To enhance utility of this low-density chip, we recommend expansion of ADME and mitochondrial markers. Inexpensive Infinium-like low-density human chips have a potential to become a "Swiss army knife" among genotyping assays suitable for many applications requiring high-throughput assays.


Subject(s)
Genomics/methods , Genotyping Techniques/methods , Molecular Diagnostic Techniques/methods , Female , Haplotypes , Humans , Male , Mitochondria/genetics , Pedigree , Reproducibility of Results , Exome Sequencing
14.
J Mol Diagn ; 18(4): 480-93, 2016 07.
Article in English | MEDLINE | ID: mdl-27155049

ABSTRACT

Retinoblastoma is a childhood eye malignancy that can lead to the loss of vision, eye(s), and sometimes life. The tumors are initiated by inactivating mutations in both alleles of the tumor-suppressor gene, RB1, or, rarely, by MYCN amplification. Timely identification of a germline RB1 mutation in blood samples or either somatic RB1 mutation or MYCN amplification in tumors is important for effective care and management of retinoblastoma patients and their families. However, current procedures to thoroughly test RB1 mutations are complicated and lengthy. Herein, we report a next-generation sequencing-based method capable of detecting point mutations, small indels, and large deletions or duplications across the entire RB1 gene and amplification of MYCN gene on a single platform. From DNA extraction to clinical interpretation requires only 3 days, enabling early molecular diagnosis of retinoblastoma and optimal treatment outcomes. This method can also detect low-level mosaic mutations in blood samples that can be missed by routine Sanger sequencing. In addition, it can differentiate between RB1 mutation- and MYCN amplification-driven retinoblastomas. This rapid, comprehensive, and sensitive method for detecting RB1 mutations and MYCN amplification can readily identify RB1 mutation carriers and thus improve the management and genetic counseling for retinoblastoma patients and their families.


Subject(s)
Genes, Retinoblastoma , High-Throughput Nucleotide Sequencing , Mutation , Retinoblastoma/diagnosis , Retinoblastoma/genetics , Alleles , DNA Copy Number Variations , DNA Mutational Analysis/methods , Exons , Gene Deletion , Gene Duplication , Humans , Mosaicism , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL