Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nat Chem Biol ; 19(9): 1147-1157, 2023 09.
Article in English | MEDLINE | ID: mdl-37291200

ABSTRACT

Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.


Subject(s)
Biosensing Techniques , NAD , Luminescent Proteins/metabolism , NAD/metabolism , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods
2.
J Am Chem Soc ; 144(15): 6928-6935, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35380808

ABSTRACT

We introduce a family of bright, rhodamine-based calcium indicators with tuneable affinities and colors. The indicators can be specifically localized to different cellular compartments and are compatible with both fluorescence and bioluminescence readouts through conjugation to HaloTag fusion proteins. Importantly, their increase in fluorescence upon localization enables no-wash live-cell imaging, which greatly facilitates their use in biological assays. Applications as fluorescent indicators in rat hippocampal neurons include the detection of single action potentials and of calcium fluxes in the endoplasmic reticulum. Applications as bioluminescent indicators include the recording of the pharmacological modulation of nuclear calcium in high-throughput compatible assays. The versatility and remarkable ease of use of these indicators make them powerful tools for bioimaging and bioassays.


Subject(s)
Calcium , Coloring Agents , Animals , Calcium/metabolism , Color , Fluorescent Dyes , Indicators and Reagents , Microscopy, Fluorescence/methods , Rats , Rhodamines
3.
PLoS Pathog ; 14(1): e1006825, 2018 01.
Article in English | MEDLINE | ID: mdl-29370298

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibody Formation , Epitopes/immunology , HIV Antibodies/metabolism , HIV-1/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Antigenic Variation , Cell Communication/immunology , Epitopes/chemistry , HEK293 Cells , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV Infections/transmission , HIV Infections/virology , Humans , Immune Evasion , Neutralization Tests , Phenotype , Viral Envelope Proteins/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology
4.
PLoS Pathog ; 13(5): e1006313, 2017 May.
Article in English | MEDLINE | ID: mdl-28472201

ABSTRACT

The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.


Subject(s)
HIV Antibodies/immunology , HIV Infections/transmission , HIV-1/immunology , Animals , Antibodies, Neutralizing , Cell Line , Female , Genes, Reporter , HIV Infections/immunology , HIV Infections/virology , Humans , Immunization, Passive , Male , Models, Theoretical , Mucous Membrane/virology , Mutation , Virion
5.
PLoS Pathog ; 13(3): e1006255, 2017 03.
Article in English | MEDLINE | ID: mdl-28264054

ABSTRACT

A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.


Subject(s)
CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/virology , HIV-1/pathogenicity , Leukocytes, Mononuclear/virology , Viral Tropism/physiology , Adaptation, Physiological/physiology , Cell Separation , Humans , Macrophages/virology , Virus Internalization
6.
Syst Biol ; 67(1): 170-174, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28673048

ABSTRACT

Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of the models and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here, we introduce the "Taming the Beast" (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2.


Subject(s)
Computational Biology/education , Computational Biology/methods , Phylogeny , Software , Teaching Materials , Algorithms
7.
PLoS Pathog ; 11(1): e1004595, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569556

ABSTRACT

HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV.


Subject(s)
HIV-1/physiology , HIV-1/pathogenicity , Protein Multimerization , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , HEK293 Cells , Humans , Kinetics , Models, Theoretical
8.
PLoS Pathog ; 11(7): e1004966, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26158270

ABSTRACT

An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection. Selection of bnAbs that are capable of suppressing HIV irrespective of the transmission mode therefore needs to be considered to ascertain their in vivo activity in therapeutic use and vaccines. Employing assay systems that allow for unambiguous discrimination between free virus and cell-cell transmission to T cells, we probed a panel of 16 bnAbs for their activity against 11 viruses from subtypes A, B and C during both transmission modes. Over a wide range of bnAb-virus combinations tested, inhibitory activity against HIV-1 cell-cell transmission was strongly decreased compared to free virus transmission. Activity loss varied considerably between virus strains and was inversely associated with neutralization of free virus spread for V1V2- and V3-directed bnAbs. In rare bnAb-virus combinations, inhibition for both transmission modes was comparable but no bnAb potently blocked cell-cell transmission across all probed virus strains. Mathematical analysis indicated an increased probability of bnAb resistance mutations to arise in cell-cell rather than free virus spread, further highlighting the need to block this pathway. Importantly, the capacity to efficiently neutralize prior to CD4 engagement correlated with the inhibition efficacy against free virus but not cell-cell transmitted virus. Pre-CD4 attachment activity proved strongest amongst CD4bs bnAbs and varied substantially for V3 and V1V2 loop bnAbs in a strain-dependent manner. In summary, bnAb activity against divergent viruses varied depending on the transmission mode and differed depending on the window of action during the entry process, underscoring that powerful combinations of bnAbs are needed for in vivo application.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/transmission , HIV-1/immunology , T-Lymphocytes/virology , Humans , T-Lymphocytes/immunology
9.
Retrovirology ; 13(1): 62, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27595568

ABSTRACT

BACKGROUND: Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs. RESULTS: All recipients were identified early in acute infection and harbored based on extensive sequencing analysis a single T/F virus allowing a controlled analysis of virus properties in matched transmission pairs. Recipient and transmitter viruses from the closest time point to transmission showed no signs of selection for specific Env modifications such as variable loop length and glycosylation. Recipient viruses were resistant to circulating plasma antibodies of the transmitter and also showed no altered sensitivity to a large panel of entry inhibitors and neutralizing antibodies. The recipient virus did not consistently differ from the transmitter virus in terms of entry kinetics, cell-cell transmission and replicative capacity in primary cells. Our paired analysis revealed a higher sensitivity of several recipient virus isolates to interferon-α (IFNα) which suggests that resistance to IFNα cannot be a general driving force in T/F establishment. CONCLUSIONS: With the exception of increased IFNα sensitivity, none of the phenotypic virus properties we investigated clearly distinguished T/F viruses from their matched transmitter viruses supporting the notion that at least in subtype B infection HIV-1 transmission is to a considerable extent stochastic.


Subject(s)
HIV Infections/transmission , HIV-1/genetics , HIV-1/physiology , env Gene Products, Human Immunodeficiency Virus/genetics , Acute Disease , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , Genetic Variation , HIV Infections/virology , HIV-1/isolation & purification , Homosexuality, Male , Humans , Interferon-alpha/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Male , Neutralization Tests , Phenotype , Sequence Analysis, DNA , Stochastic Processes , Viral Tropism , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/immunology
10.
Retrovirology ; 11: 75, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25287422

ABSTRACT

BACKGROUND: Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved. Since HIV cell-cell transmission is considered a highly effective means of virus dissemination, we investigated whether cell-cell transmission may serve to enhance infectivity of V1V2 variants with debilitated free virus entry. RESULTS: In a detailed comparison of wt and V1V2 mutant envelopes, V1V2 proved to be a key factor in ascertaining free virus infectivity, with V1V2 mutants displaying significantly reduced trimer integrity. Despite these defects, cell-cell transmission was able to partially rescue infectivity of V1V2 mutant viruses. We identified two regions, encompassing amino acids 156 to 160 (targeted by broadly neutralizing antibodies) and 175 to 180 (encompassing the α4ß7 binding site) which were particularly prone to free virus infectivity loss upon mutation but maintained infectivity in cell-cell transmission. Of note, V1V2 antibody shielding proved important during both free virus infection and cell-cell transmission. CONCLUSIONS: Based on our data we propose a model for V1V2 evolution that centers on cell-cell transmission as a salvage pathway for virus replication. Escape from antibody neutralization may frequently result in V1V2 mutations that reduce free virus infectivity. Cell-cell transmission could provide these escape viruses with sufficiently high replication levels that enable selection of compensatory mutations, thereby restoring free virus infectivity while ensuring antibody escape. Thus, our study highlights the need to factor in cell-cell transmission when considering neutralization escape pathways of HIV-1.


Subject(s)
HIV Envelope Protein gp120/physiology , HIV-1/pathogenicity , Immune Evasion , Amino Acid Sequence , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , Humans , Mutation , Virus Internalization
11.
PLoS Comput Biol ; 9(2): e1002900, 2013.
Article in English | MEDLINE | ID: mdl-23468602

ABSTRACT

Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics. Applying these models lead to very low estimates of the number of antibodies needed for neutralisation. In contrast, according to the more conceptual approach of stoichiometries in virology a much higher number of antibodies is required for virus neutralisation by antibodies. Here, we combine chemical binding kinetics with (virological) stoichiometries to better explain virus neutralisation by antibody binding. This framework is in agreement with published data on the neutralisation of the human immunodeficiency virus. Knowing antibody reaction constants, our model allows us to estimate stoichiometrical parameters from kinetic neutralisation curves. In addition, we can identify important parameters that will make further analysis of kinetic neutralisation curves more valuable in the context of estimating stoichiometries. Our model gives a more subtle explanation of kinetic neutralisation curves in terms of single-hit and multi-hit kinetics.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Models, Biological , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Computational Biology , Epitopes/immunology , Epitopes/metabolism , HIV/immunology , HIV/metabolism , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Kinetics , Mice
12.
Science ; 383(6685): 890-897, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38386755

ABSTRACT

Recordings of the physiological history of cells provide insights into biological processes, yet obtaining such recordings is a challenge. To address this, we introduce a method to record transient cellular events for later analysis. We designed proteins that become labeled in the presence of both a specific cellular activity and a fluorescent substrate. The recording period is set by the presence of the substrate, whereas the cellular activity controls the degree of the labeling. The use of distinguishable substrates enabled the recording of successive periods of activity. We recorded protein-protein interactions, G protein-coupled receptor activation, and increases in intracellular calcium. Recordings of elevated calcium levels allowed selections of cells from heterogeneous populations for transcriptomic analysis and tracking of neuronal activities in flies and zebrafish.


Subject(s)
Calcium , Cell Physiological Phenomena , Cells , Staining and Labeling , Animals , Coloring Agents , Gene Expression Profiling , Zebrafish , Cells/chemistry , Protein Interaction Domains and Motifs
13.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320988

ABSTRACT

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioma/genetics , Brain Neoplasms/genetics , Chitinase-3-Like Protein 1
14.
PLoS One ; 18(3): e0282237, 2023.
Article in English | MEDLINE | ID: mdl-36877693

ABSTRACT

Headaches account for up to 4.5% of emergency department visits, where they present a significant diagnostic challenge. While primary headaches are benign, secondary headaches can be life-threatening. It is essential to rapidly differentiate between primary and secondary headaches as the latter require immediate diagnostic work-up. Current assessment relies on subjective measures; time constraints can result in overuse of diagnostic neuroimaging, prolonging diagnosis, and adding to economic burden. There is therefore an unmet need for a time- and cost-efficient, quantitative triaging tool to guide further diagnostic testing. Routine blood tests may provide important diagnostic and prognostic biomarkers indicating underlying headache causes. In this retrospective study (approved by the UK Medicines and Healthcare products Regulatory Agency Independent Scientific Advisory Committee for Clinical Practice Research Datalink (CPRD) research [20_000173]), UK CPRD real-world data from patients (n = 121,241) presenting with headache from 1993-2021 were used to generate a predictive model based on a machine learning (ML) approach for primary versus secondary headaches. A ML-based predictive model was constructed using two different methods (logistic regression and random forest) and the following predictors were evaluated: ten standard measurements of complete blood count (CBC) test, 19 ratios of the ten CBC test parameters, and patient demographic and clinical characteristics. The model's predictive performance was assessed using a set of cross-validated model performance metrics. The final predictive model showed modest predictive accuracy using the random forest method (balanced accuracy: 0.7405). The sensitivity, specificity, false negative rate (incorrect prediction of secondary headache as primary headache), and false positive rate (incorrect prediction of primary headache as secondary headache) were 58%, 90%, 10%, and 42%, respectively. The ML-based prediction model developed could provide a useful time- and cost-effective quantitative clinical tool to facilitate the triaging of patients presenting to the clinic with headache.


Subject(s)
Ambulatory Care Facilities , Headache , Humans , Retrospective Studies , Blood Cell Count , Headache/diagnosis , Machine Learning
16.
J Theor Biol ; 283(1): 192-202, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21683711

ABSTRACT

HIV virions infect cells by attaching to target cell receptors, fusing membranes with the cell and by finally releasing their genetic material into the target cells. Antibodies can hinder the infection by attaching to the HIV envelope glycoprotein trimers before or during attachment. The exact mechanisms and the quantitative requirements of antibody neutralization are still debated. Recently, the number of antibodies rendering one trimer non-functional, called stoichiometry of (trimer) neutralization, was studied with mathematical models. Here we extend this theoretical framework to calculate the stoichiometries of neutralizing a single virion and a whole virion population. We derive mathematical equations for antibody neutralization based on restricted occupancy theory. Additionally we simulate these processes when a direct calculation is not possible. We find that the number of trimers needed for cell entry and the number of antibodies neutralizing one trimer strongly influence the mean number of antibodies needed for virion and population neutralization. Further we show that the mean number of antibodies needed to neutralize a virion population exceeds the product of the number of virions in the population and the mean number of antibodies needed to neutralize one virion.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV/immunology , Models, Immunological , Virion/immunology , Antigen-Antibody Reactions/immunology , HIV Infections/immunology , Humans , Virus Internalization
17.
PLoS Comput Biol ; 6(3): e1000713, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20333245

ABSTRACT

HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion's surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers-which is also an important determinant of the stoichiometry of entry-influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of virions.


Subject(s)
Cell Membrane/immunology , Cell Membrane/virology , HIV/immunology , Models, Immunological , Virus Activation/immunology , Virus Internalization , Animals , Cell Membrane/chemistry , Computer Simulation , HIV/chemistry , Humans , Models, Chemical
18.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33882122

ABSTRACT

The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza A virus/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , A549 Cells , Adaptive Immunity/immunology , Animals , Cell Line , Cell Line, Tumor , Dogs , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Influenza, Human/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteolysis
19.
Cell Rep Med ; 2(3): 100209, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33763654

ABSTRACT

Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control.


Subject(s)
Cancer Vaccines/administration & dosage , Immunotherapy/methods , Lymphocytic choriomeningitis virus/immunology , Mastocytoma/therapy , Pichinde virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Alarmins/genetics , Alarmins/immunology , Animals , Antibodies, Neutralizing/pharmacology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Female , Gene Expression , Genetic Engineering/methods , Genetic Vectors/classification , Genetic Vectors/immunology , Guinea Pigs , Immunization, Secondary , Lymphocytic choriomeningitis virus/classification , Lymphocytic choriomeningitis virus/genetics , Mastocytoma/genetics , Mastocytoma/immunology , Mastocytoma/mortality , Mice , Mice, Inbred C57BL , Phylogeny , Pichinde virus/classification , Pichinde virus/genetics , Self Tolerance , Survival Analysis , Vaccination/methods
20.
BMC Evol Biol ; 10: 380, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21143840

ABSTRACT

BACKGROUND: The ability of an immune system to remember pathogens improves the chance of the host to survive a second exposure to the same pathogen. This immunological memory has evolved in response to the pathogen environment of the hosts. In vertebrates, the memory of previous infection is physiologically accomplished by the development of memory T and B cells. Many questions concerning the generation and maintenance of immunological memory are still debated. Is there a limit to how many memory cells a host can generate and maintain? If there is a limit, how should new cells be incorporated into a filled memory compartment? And how many different pathogens should the immune system remember? RESULTS: In this study, we examine how memory traits evolve as a response to different pathogen environments using an individual-based model. We find that even without a cost related to the maintenance of a memory pool, the positive effect of bigger memory pool sizes saturates. The optimal diversity of a limited memory pool is determined by the probability of re-infection, rather than by the prevalence of a pathogen in the environment, or the frequency of exposure. CONCLUSIONS: Relating immune memory traits to the pathogen environment of the hosts, our population biological framework sheds light on the evolutionary determinants of immune memory.


Subject(s)
Biological Evolution , Immunologic Memory/genetics , Models, Immunological , Computer Simulation , Genetic Fitness , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL