Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 119(48): e2209875119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36417432

ABSTRACT

Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.


Subject(s)
Dwarfism , Triticum , Triticum/genetics , Triticum/metabolism , Nucleotides/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Binding Sites
2.
Phytopathology ; 114(6): 1356-1365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38114076

ABSTRACT

Puccinia coronata f. sp. avenae is the causal agent of the disease known as crown rust, which represents a bottleneck in oat production worldwide. Characterization of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared the virulence profiles of 25 P. coronata f. sp. avenae isolates from Australia using two host differential sets, one from Australia and one from the United States. These differential sets were also genotyped using diversity arrays technology sequencing technology. Phenotypic and genotypic discrepancies were detected on 8 out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar Volta carries Pc91 and demonstrates the value of implementing molecular markers to characterize materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Avena , Disease Resistance , Genotype , Plant Diseases , Puccinia , Avena/microbiology , Avena/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Australia , Puccinia/genetics , Phenotype , Virulence/genetics , United States , Genetic Markers/genetics , Basidiomycota/genetics , Basidiomycota/physiology
3.
New Phytol ; 234(2): 592-606, 2022 04.
Article in English | MEDLINE | ID: mdl-35107838

ABSTRACT

Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.


Subject(s)
Basidiomycota , Disease Resistance , Basidiomycota/physiology , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
4.
Theor Appl Genet ; 135(5): 1541-1550, 2022 May.
Article in English | MEDLINE | ID: mdl-35199199

ABSTRACT

KEY MESSAGE: Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.


Subject(s)
Basidiomycota , Triticum , Australia , Basidiomycota/physiology , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Plant Stems/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics
5.
BMC Biol ; 19(1): 203, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526021

ABSTRACT

BACKGROUND: Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. RESULTS: We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5' uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5' adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. CONCLUSIONS: We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


Subject(s)
Basidiomycota , DNA Methylation , Puccinia , Basidiomycota/genetics , Centromere , DNA Methylation/genetics , DNA Transposable Elements , Genomic Instability , Humans , Plant Diseases/genetics , Puccinia/pathogenicity , RNA
6.
Plant Biotechnol J ; 19(2): 273-284, 2021 02.
Article in English | MEDLINE | ID: mdl-32744350

ABSTRACT

In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.


Subject(s)
Basidiomycota , Disease Resistance/genetics , Hordeum , Plant Diseases/genetics , Hordeum/genetics , Plant Diseases/microbiology
7.
Theor Appl Genet ; 132(2): 371-382, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30377705

ABSTRACT

KEY MESSAGE: We report transfer of a rust resistance gene named SrB, on the 6Ae#3 chromosome, to wheat by recombination with the 6Ae#1 segment carrying Sr26 and development of a linked marker. A stem rust resistance gene from a South African wheat W3757, temporarily named SrB, has been transferred onto chromosome 6A. Line W3757 is a 6Ae#3 (6D) substitution line in which the Thinopyrum ponticum chromosomes carry SrB. Crosses were made between W3757 and a T6AS·6AL-6Ae#1 recombinant line named WA-5 carrying the stem rust resistance gene Sr26 on a chromosome segment from another accession of Th. ponticum. The 6Ae#1 and 6Ae#3 chromosomes had previously been shown to pair at meiosis and were polymorphic for the distally located RFLP probes BCD001 and MWG798. A recombinant plant (Type A) was identified carrying a distal chromosome segment from the 6Ae#3 chromosome and a sub-terminal segment from the 6Ae#1 chromosome. Rust tests on the recombinant Type A showed the infection type for SrB. Segregation and linkage data combined with genomic in situ hybridization studies demonstrated that SrB had been transferred to wheat chromosome arm 6AL by recombination between the Thinopyrum chromosome segments. A recombinant positive for the 6Ae#1-6Ae#3 chromosome showed enhanced stem rust resistance compared to the 6Ae#3 addition line in repeated rust tests. A diagnostic PCR-based marker was developed for the 6Ae#3 chromosome segment on the Type A recombinant carrying SrB that distinguishes it from the Sr26-containing segment. A stem rust resistant line which combines SrB with Sr26 would be a great addition to the pool of resistant germplasm for wheat breeders to achieve more durable and effective control of stem rust because virulence has not been found for either of these two genes.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Poaceae/genetics , Triticum/genetics , Base Sequence , Basidiomycota/pathogenicity , Crosses, Genetic , Genetic Linkage , Genetic Markers , Plant Breeding , Plant Diseases/microbiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Triticum/microbiology
8.
Phytopathology ; 109(10): 1751-1759, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31199201

ABSTRACT

The wheat Sr2 locus confers partial resistance to four biotrophic pathogens: wheat stem rust (Puccinia graminis f. sp. tritici), leaf rust (P. triticina), stripe rust (P. striiformis f. sp. tritici), and powdery mildew (Blumeria graminis f. sp. tritici). In addition, Sr2 is linked with a brown coloration of ears and stems, termed pseudo-black chaff (PBC). PBC, initially believed to be elicited by stem rust infection, was subsequently recognized to occur in the absence of pathogen infection. The current study demonstrates that the resistance response to stem rust is associated with the death of photosynthetic cells around rust infection sites in the inoculated leaf sheath. Similarly, Sr2-dependent resistance to powdery mildew was associated with the death of leaf mesophyll cells around mildew infection sites. We demonstrate that PBC occurring in the absence of pathogen inoculation also corresponds with death and the collapse of photosynthetic cells in the affected parts of stems and ears. In addition, Sr2-dependent necrosis was inducible in leaves by application of petroleum jelly or by heat treatments. Thus, Sr2 was found to be associated with cell death, which could be triggered by either biotic or abiotic stresses. Our results suggest a role for the Sr2 locus in controlling cell death in response to stress.


Subject(s)
Basidiomycota , Disease Resistance , Genes, Plant , Triticum , Cell Death/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Phenotype , Plant Diseases/microbiology , Stress, Physiological , Triticum/genetics , Triticum/microbiology
9.
Proc Natl Acad Sci U S A ; 113(36): 10204-9, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27555587

ABSTRACT

Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.


Subject(s)
Disease Resistance/genetics , Edible Grain/immunology , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Proteins/immunology , Plant Stems/immunology , Triticum/immunology , Amino Acid Sequence , Basidiomycota/pathogenicity , Basidiomycota/physiology , Cell Nucleus/metabolism , Cell Nucleus/microbiology , Cytosol/immunology , Cytosol/metabolism , Cytosol/microbiology , Edible Grain/genetics , Edible Grain/microbiology , Plant Cells/immunology , Plant Cells/metabolism , Plant Cells/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Stems/genetics , Plant Stems/microbiology , Plants, Genetically Modified , Sequence Alignment , Sequence Homology, Amino Acid , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Triticum/genetics , Triticum/microbiology
11.
Plant J ; 76(6): 957-69, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24124925

ABSTRACT

The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.


Subject(s)
Ascomycota/physiology , Chromosomes, Plant/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Secale/genetics , Triticum/genetics , Alleles , Ascomycota/pathogenicity , Base Sequence , Chromosome Mapping , Cloning, Molecular , Disease Resistance , Evolution, Molecular , Gene Expression , Genetic Markers , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Structure, Tertiary , Secale/immunology , Secale/microbiology , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Triticum/immunology , Triticum/microbiology
12.
Mol Plant Microbe Interact ; 27(3): 255-64, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24156769

ABSTRACT

Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat.


Subject(s)
Bacterial Proteins/metabolism , Hordeum/metabolism , Plant Diseases/microbiology , Pseudomonas fluorescens/metabolism , Triticum/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Bacterial Proteins/genetics , Basidiomycota/pathogenicity , Calmodulin/genetics , Calmodulin/metabolism , Genetic Engineering , Hordeum/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Stems/metabolism , Plant Stems/microbiology , Plants, Genetically Modified , Protein Transport , Pseudomonas fluorescens/genetics , Pseudomonas syringae/genetics , Recombinant Fusion Proteins , Triticum/microbiology , Virulence , Xanthomonas/genetics
13.
BMC Plant Biol ; 14: 379, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25547135

ABSTRACT

BACKGROUND: The adult plant stem rust resistance gene Sr2 was introgressed into hexaploid wheat cultivar (cv) Marquis from tetraploid emmer wheat cv Yaroslav, to generate stem rust resistant cv Hope in the 1920s. Subsequently, Sr2 has been widely deployed and has provided durable partial resistance to all known races of Puccinia graminis f. sp. tritici. This report describes the physical map of the Sr2-carrying region on the short arm of chromosome 3B of cv Hope and compares the Hope haplotype with non-Sr2 wheat cv Chinese Spring. RESULTS: Sr2 was located to a region of 867 kb on chromosome 3B in Hope, which corresponded to a region of 567 kb in Chinese Spring. The Hope Sr2 region carried 34 putative genes but only 17 were annotated in the comparable region of Chinese Spring. The two haplotypes differed by extensive DNA sequence polymorphisms between flanking markers as well as by a major insertion/deletion event including ten Germin-Like Protein (GLP) genes in Hope that were absent in Chinese Spring. Haplotype analysis of a limited number of wheat genotypes of interest showed that all wheat genotypes carrying Sr2 possessed the GLP cluster; while, of those lacking Sr2, some, including Marquis, possessed the cluster, while some lacked it. Thus, this region represents a common presence-absence polymorphism in wheat, with presence of the cluster not correlated with presence of Sr2. Comparison of Hope and Marquis GLP genes on 3BS found no polymorphisms in the coding regions of the ten genes but several SNPs in the shared promoter of one divergently transcribed GLP gene pair and a single SNP downstream of the transcribed region of a second GLP. CONCLUSION: Physical mapping and sequence comparison showed major haplotype divergence at the Sr2 locus between Hope and Chinese Spring. Candidate genes within the Sr2 region of Hope are being evaluated for the ability to confer stem rust resistance. Based on the detailed mapping and sequencing of the locus, we predict that Sr2 does not belong to the NB-LRR gene family and is not related to previously cloned, race non-specific rust resistance genes Lr34 and Yr36.


Subject(s)
Basidiomycota/physiology , Disease Resistance/genetics , Evolution, Molecular , Plant Diseases/genetics , Plant Proteins/genetics , Triticum/genetics , Triticum/microbiology , Base Sequence , Glycoproteins/genetics , Glycoproteins/metabolism , Haplotypes , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Proteins/metabolism , Polymorphism, Genetic , Triticum/metabolism
14.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21536894

ABSTRACT

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Subject(s)
Basidiomycota/genetics , Fungi/genetics , Triticum/microbiology , Gene Expression Profiling , Genes, Fungal , Genome , Genome, Fungal , Models, Genetic , Nitrates/chemistry , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Sequence Analysis, DNA , Sulfates/chemistry
15.
BMC Plant Biol ; 13: 96, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23819608

ABSTRACT

BACKGROUND: Adult plant rust resistance genes Lr67 and Lr34 confer race non-specific resistance to multiple fungal pathogens of wheat. Induced, susceptible mutants were characterised for both genes. RESULTS: Three categories of Lr34 mutants were identified that were either partial susceptible, fully susceptible or hyper-susceptible to stripe rust and leaf rust. The likely impact of the mutational change on the predicted Lr34 protein correlated with differences in response to rust infection. Four independent Lr67 mutants were recovered that were susceptible to stripe rust, leaf rust and stem rust pathogens, including one possible hyper-susceptible Lr67 mutant. CONCLUSIONS: Detailed study of Lr34 mutants revealed that subtle changes in resistance response to multiple pathogens were correlated with mutational changes in the predicted protein. Recovery of independent Lr67 mutants indicates that as for Lr34, a single gene at the Lr67 locus is likely to confer resistance to multiple pathogens. The infection phenotypes of Lr67 mutants closely resembled that of Lr34 mutants.


Subject(s)
Basidiomycota/physiology , Plant Diseases/microbiology , Plant Proteins/immunology , Triticum/immunology , Triticum/microbiology , Disease Resistance , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Tertiary , Triticum/chemistry , Triticum/genetics
16.
Theor Appl Genet ; 126(12): 2943-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23989672

ABSTRACT

KEY MESSAGE: Wheat- Aegilops speltoides recombinants carrying stem rust resistance genes Sr32 and SrAes1t effective against Ug99 and PCR markers for marker-assisted selection. Wild relatives of wheat are important resources for new rust resistance genes but underutilized because the valuable resistances are often linked to negative traits that prevent deployment of these genes in commercial wheats. Here, we report ph1b-induced recombinants with reduced alien chromatin derived from E.R. Sears' wheat-Aegilops speltoides 2D-2S#1 translocation line C82.2, which carries the widely effective stem rust resistance gene Sr32. Infection type assessments of the recombinants showed that the original translocation in fact carries two stem rust resistance genes, Sr32 on the short arm and a previously undescribed gene SrAes1t on the long arm of chromosome 2S#1. Recombinants with substantially shortened alien chromatin were produced for both genes, which confer resistance to stem rust races in the TTKSK (Ug99) lineage and representative races of all Australian stem rust lineages. Selected recombinants were back crossed into adapted Australian cultivars and PCR markers were developed to facilitate the incorporation of these genes into future wheat varieties. Our recombinants and those from several other labs now show that Sr32, Sr39, and SrAes7t on the short arm and Sr47 and SrAes1t on the long arm of 2S#1 form two linkage groups and at present no rust races are described that can distinguish these resistance specificities.


Subject(s)
Basidiomycota , Chromosomes, Plant/genetics , Genes, Plant/genetics , Genetic Markers/genetics , Plant Diseases/genetics , Plant Stems/genetics , Triticum/genetics , Chromatin/genetics , Homologous Recombination , In Situ Hybridization, Fluorescence , Plant Diseases/immunology , Plant Stems/immunology , Polymerase Chain Reaction , Triticum/immunology
17.
Nat Microbiol ; 8(11): 2130-2141, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884814

ABSTRACT

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.


Subject(s)
Plant Diseases , Triticum , Phylogeny , Plant Diseases/microbiology , Triticum/microbiology , Australia
18.
Genome Biol ; 23(1): 84, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35337367

ABSTRACT

BACKGROUND: Most animals and plants have more than one set of chromosomes and package these haplotypes into a single nucleus within each cell. In contrast, many fungal species carry multiple haploid nuclei per cell. Rust fungi are such species with two nuclei (karyons) that contain a full set of haploid chromosomes each. The physical separation of haplotypes in dikaryons means that, unlike in diploids, Hi-C chromatin contacts between haplotypes are false-positive signals. RESULTS: We generate the first chromosome-scale, fully-phased assembly for the dikaryotic leaf rust fungus Puccinia triticina and compare Nanopore MinION and PacBio HiFi sequence-based assemblies. We show that false-positive Hi-C contacts between haplotypes are predominantly caused by phase switches rather than by collapsed regions or Hi-C read mis-mappings. We introduce a method for phasing of dikaryotic genomes into the two haplotypes using Hi-C contact graphs, including a phase switch correction step. In the HiFi assembly, relatively few phase switches occur, and these are predominantly located at haplotig boundaries and can be readily corrected. In contrast, phase switches are widespread throughout the Nanopore assembly. We show that haploid genome read coverage of 30-40 times using HiFi sequencing is required for phasing of the leaf rust genome, with 0.7% heterozygosity, and that HiFi sequencing resolves genomic regions with low heterozygosity that are otherwise collapsed in the Nanopore assembly. CONCLUSIONS: This first Hi-C based phasing pipeline for dikaryons and comparison of long-read sequencing technologies will inform future genome assembly and haplotype phasing projects in other non-haploid organisms.


Subject(s)
Nanopores , Animals , Benchmarking , Genome , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
19.
Mol Plant Microbe Interact ; 24(10): 1143-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21899436

ABSTRACT

Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P. triticina, P. striiformis, and P. hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.


Subject(s)
Basidiomycota/pathogenicity , Oryza/microbiology , Base Sequence , Basidiomycota/classification , Crosses, Genetic , DNA, Plant/genetics , Genes, Plant , Genetic Variation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Hydrogen Peroxide/metabolism , Magnaporthe/pathogenicity , Mutation , Oryza/genetics , Oryza/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Signal Transduction , Species Specificity
20.
Proc Natl Acad Sci U S A ; 105(16): 6075-80, 2008 Apr 22.
Article in English | MEDLINE | ID: mdl-18417451

ABSTRACT

During meiosis, homologous chromosomes (homologues) recognize each other and then intimately associate. Studies exploiting species with large chromosomes reveal that chromatin is remodeled at the onset of meiosis before this intimate association. However, little is known about the effect the remodeling has on pairing. We show here in wheat that chromatin remodeling of homologues can only occur if they are identical or nearly identical. Moreover, a failure to undergo remodeling results in reduced pairing between the homologues. Thus, chromatin remodeling at the onset of meiosis enables the chromosomes to become competent to pair and recombine efficiently.


Subject(s)
Chromatin Assembly and Disassembly , Chromosome Pairing , Chromosomes, Plant/genetics , Heterochromatin/metabolism , Triticum/genetics , Heterochromatin/ultrastructure , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL