Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Biol Chem ; 299(6): 104792, 2023 06.
Article in English | MEDLINE | ID: mdl-37150321

ABSTRACT

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Subject(s)
Caspase 8 , Necroptosis , Oxidants , Tumor Necrosis Factors , Animals , Mice , Caspase 8/chemistry , Caspase 8/metabolism , Inflammation/metabolism , Necroptosis/drug effects , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Tumor Necrosis Factors/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/metabolism , Peroxidase , Lactoperoxidase , Catalytic Domain
2.
J Immunol ; 208(4): 979-990, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35046105

ABSTRACT

Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Cystic Fibrosis/immunology , Inflammation/immunology , Leukocyte L1 Antigen Complex/metabolism , Neutrophils/immunology , Peptides/metabolism , Respiratory System/metabolism , Child , Child, Preschool , Cystic Fibrosis/diagnosis , Female , Humans , Inflammation/diagnosis , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/immunology , Male , Neutrophil Activation , Oxidation-Reduction , Peptides/genetics , Peptides/immunology , Proteolysis
3.
J Biol Chem ; 295(10): 2984-2999, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31974167

ABSTRACT

During aerobic growth, the Gram-positive facultative anaerobe and opportunistic human pathogen Streptococcus pneumoniae generates large amounts of hydrogen peroxide that can accumulate to millimolar concentrations. The mechanism by which this catalase-negative bacterium can withstand endogenous hydrogen peroxide is incompletely understood. The enzyme alkylhydroperoxidase D (AhpD) has been shown to contribute to pneumococcal virulence and oxidative stress responses in vivo We demonstrate here that SpAhpD exhibits weak thiol-dependent peroxidase activity and, unlike the previously reported Mycobacterium tuberculosis AhpC/D system, SpAhpD does not mediate electron transfer to SpAhpC. A 2.3-Å resolution crystal structure revealed several unusual structural features, including a three-cysteine active site architecture that is buried in a deep pocket, in contrast to the two-cysteine active site found in other AhpD enzymes. All single-cysteine SpAhpD variants remained partially active, and LC-MS/MS analyses revealed that the third cysteine, Cys-163, formed disulfide bonds with either of two cysteines in the canonical Cys-78-X-X-Cys-81 motif. We observed that SpAhpD formed a dimeric quaternary structure both in the crystal and in solution, and that the highly conserved Asn-76 of the AhpD core motif is important for SpAhpD folding. In summary, SpAhpD is a weak peroxidase and does not transfer electrons to AhpC, and therefore does not fit existing models of bacterial AhpD antioxidant defense mechanisms. We propose that it is unlikely that SpAhpD removes peroxides either directly or via AhpC, and that SpAhpD cysteine oxidation may act as a redox switch or mediate electron transfer with other thiol proteins.


Subject(s)
Bacterial Proteins/metabolism , Peroxidases/metabolism , Streptococcus pneumoniae/enzymology , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Dimerization , Disulfides/chemistry , Dithiothreitol/chemistry , Mutagenesis, Site-Directed , Peroxidases/chemistry , Peroxidases/genetics , Protein Structure, Quaternary , Sequence Alignment , Tandem Mass Spectrometry
4.
J Biol Chem ; 290(15): 9896-905, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25697357

ABSTRACT

Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.


Subject(s)
Lipid Peroxidation , Neutrophils/metabolism , Peroxidase/metabolism , Proteome/metabolism , Aldehydes/pharmacology , Butylated Hydroxytoluene/pharmacology , Calgranulin B/metabolism , Chromans/pharmacology , Cytosol/metabolism , Electrophoresis, Gel, Two-Dimensional , Humans , Immunoblotting , Leukocyte L1 Antigen Complex/metabolism , NADPH Oxidases/metabolism , Oxidation-Reduction , Phagocytosis , Protein Carbonylation/drug effects , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors
5.
Biochem J ; 462(2): 303-14, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24916123

ABSTRACT

MIF (macrophage migration inhibitory factor) plays a central role in the promotion and maintenance of the inflammatory response. It is implicated in a number of inflammatory diseases including sepsis, arthritis and colitis, and in diseases with an inflammatory component, such as atherosclerosis, diabetes and cancer. MIF has an unusual N-terminal proline with catalytic activity, and targeting of this residue by small-molecule inhibitors has been shown to interfere with the biological activity of MIF. The objective of the present study was to determine if MIF was susceptible to modification by epicatechins, a group of dietary flavonoids with known anti-inflammatory properties. Epicatechins are substrates for peroxidases including neutrophil-derived MPO (myeloperoxidase). In the present study we show that oxidation of the catechol moiety of epicatechins to an ο-quinone by MPO generates potent MIF inhibitors. Near complete inhibition of MIF by the MPO/H2O2/epicatechin system was achieved at equimolar concentrations of epicatechin and MIF, even in the presence of other MPO substrates. We have characterized the modification introduced by oxidized (-)-epicatechin on MIF by LC-MS (liquid chromatography MS) and found it to occur at the N-terminal proline. We propose that MIF inhibition by oxidized epicatechins contributes to the anti-inflammatory activity of these compounds.


Subject(s)
Anti-Inflammatory Agents/chemistry , Catechin/chemistry , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Peroxidase/chemistry , Computer Simulation , Humans , Hydrogen Peroxide/chemistry , Isomerism , Macrophage Migration-Inhibitory Factors/chemistry , Models, Molecular , Oxidation-Reduction , Periodic Acid/chemistry , Recombinant Proteins/chemistry
6.
Epigenomes ; 8(2)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38804366

ABSTRACT

The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent.

7.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951545

ABSTRACT

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Subject(s)
Amyloid , Cyclin-Dependent Kinase Inhibitor p16 , Cysteine , Oxidation-Reduction , Amyloid/metabolism , Amyloid/chemistry , Humans , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cysteine/metabolism , Cysteine/chemistry , Disulfides/metabolism , Disulfides/chemistry , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/chemistry , Mutation , Polymerization
8.
Adv Sci (Weinh) ; 10(26): e2300538, 2023 09.
Article in English | MEDLINE | ID: mdl-37424046

ABSTRACT

Visible light-mediated cross-linking has utility for enhancing the structural capacity and shape fidelity of laboratory-based polymers. With increased light penetration and cross-linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross-linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient-derived lipoaspirate for soft tissue reconstruction. Freshly-isolated tissue is photocross-linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross-linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross-linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically-relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures.


Subject(s)
Light , Humans , X-Ray Microtomography
9.
J Biol Chem ; 286(43): 37578-89, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21880720

ABSTRACT

Myeloperoxidase (MPO) is a prime candidate for promoting oxidative stress during inflammation. This abundant enzyme of neutrophils uses hydrogen peroxide to oxidize chloride to highly reactive and toxic chlorine bleach. We have identified 2-thioxanthines as potent mechanism-based inactivators of MPO. Mass spectrometry and x-ray crystal structures revealed that these inhibitors become covalently attached to the heme prosthetic groups of the enzyme. We propose a mechanism whereby 2-thioxanthines are oxidized, and their incipient free radicals react with the heme groups of the enzyme before they can exit the active site. 2-Thioxanthines inhibited MPO in plasma and decreased protein chlorination in a mouse model of peritonitis. They slowed but did not prevent neutrophils from killing bacteria and were poor inhibitors of thyroid peroxidase. Our study shows that MPO is susceptible to the free radicals it generates, and this Achilles' heel of the enzyme can be exploited to block oxidative stress during inflammation.


Subject(s)
Enzyme Inhibitors , Neutrophils/enzymology , Oxidative Stress/drug effects , Peritonitis/enzymology , Peroxidase , Xanthines , Animals , Crystallography, X-Ray , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inflammation/drug therapy , Inflammation/ethnology , Inflammation/microbiology , Inflammation/pathology , Mice , Neutrophils/pathology , Oxidation-Reduction/drug effects , Peritonitis/drug therapy , Peritonitis/pathology , Peroxidase/antagonists & inhibitors , Peroxidase/chemistry , Peroxidase/metabolism , Xanthines/chemistry , Xanthines/pharmacology
10.
Sci Rep ; 12(1): 14845, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050369

ABSTRACT

Gliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten-eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy.


Subject(s)
Brain Neoplasms , Cytosine , Glioma , Brain Neoplasms/chemistry , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Cytosine/cerebrospinal fluid , Cytosine/chemistry , DNA Methylation , Glioma/chemistry , Glioma/diagnosis , Glioma/pathology , Humans , Neoplasm Grading , O(6)-Methylguanine-DNA Methyltransferase/genetics , Promoter Regions, Genetic
11.
Acta Neuropathol Commun ; 10(1): 38, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331340

ABSTRACT

INTRODUCTION: Neutrophil accumulation is a well-established feature of Alzheimer's disease (AD) and has been linked to cognitive impairment by modulating disease-relevant neuroinflammatory and vascular pathways. Neutrophils express high levels of the oxidant-generating enzyme myeloperoxidase (MPO), however there has been controversy regarding the cellular source and localisation of MPO in the AD brain. MATERIALS AND METHODS: We used immunostaining and immunoassays to quantify the accumulation of neutrophils in human AD tissue microarrays and in the brains of APP/PS1 mice. We also used multiplexed immunolabelling to define the presence of NETs in AD. RESULTS: There was an increase in neutrophils in AD brains as well as in the murine APP/PS1 model of AD. Indeed, MPO expression was almost exclusively confined to S100A8-positive neutrophils in both human AD and murine APP/PS1 brains. The vascular localisation of neutrophils in both human AD and mouse models of AD was striking and driven by enhanced neutrophil adhesion to small vessels. We also observed rare infiltrating neutrophils and deposits of MPO around plaques. Citrullinated histone H3, a marker of neutrophil extracellular traps (NETs), was also detected in human AD cases at these sites, indicating the presence of extracellular MPO in the vasculature. Finally, there was a reduction in the endothelial glycocalyx in AD that may be responsible for non-productive neutrophil adhesion to the vasculature. CONCLUSION: Our report indicates that vascular changes may drive neutrophil adhesion and NETosis, and that neutrophil-derived MPO may lead to vascular oxidative stress and be a relevant therapeutic target in AD.


Subject(s)
Alzheimer Disease , Extracellular Traps , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Extracellular Traps/metabolism , Humans , Mice , Neutrophils/metabolism , Peroxidase/metabolism
12.
Front Oncol ; 11: 709543, 2021.
Article in English | MEDLINE | ID: mdl-34497762

ABSTRACT

Loss-of-function mutations in the DNA demethylase TET2 are associated with the dysregulation of hematopoietic stem cell differentiation and arise in approximately 10% of de novo acute myeloid leukemia (AML). TET2 mutations coexist with other mutations in AML, including TP53 mutations, which can indicate a particularly poor prognosis. Ascorbate can function as an epigenetic therapeutic in pathological contexts involving heterozygous TET2 mutations by restoring TET2 activity. How this response is affected when myeloid leukemia cells harbor mutations in both TET2 and TP53 is unknown. Therefore, we examined the effects of ascorbate on the SKM-1 AML cell line that has mutated TET2 and TP53. Sustained treatment with ascorbate inhibited proliferation and promoted the differentiation of these cells. Furthermore, ascorbate treatment significantly increased 5-hydroxymethylcytosine, suggesting increased TET activity as the likely mechanism. We also investigated whether ascorbate affected the cytotoxicity of Prima-1Met, a drug that reactivates some p53 mutants and is currently in clinical trials for AML. We found that the addition of ascorbate had a minimal effect on Prima-1Met-induced cytotoxicity, with small increases or decreases in cytotoxicity being observed depending on the timing of treatment. Collectively, these data suggest that ascorbate could exert a beneficial anti-proliferative effect on AML cells harboring both TET2 and TP53 mutations whilst not interfering with targeted cytotoxic therapies such as Prima-1Met.

13.
Redox Biol ; 46: 102090, 2021 10.
Article in English | MEDLINE | ID: mdl-34438259

ABSTRACT

Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules.


Subject(s)
Melanoma , Peroxidase , Cell Line , Extracellular Matrix Proteins/genetics , Humans , Melanoma/genetics , Peroxidase/genetics , Peroxidasin
14.
Methods Mol Biol ; 2087: 149-164, 2020.
Article in English | MEDLINE | ID: mdl-31728990

ABSTRACT

This chapter describes three methods for measuring the bactericidal activity of neutrophils. All utilize colony counting techniques to quantify viable bacteria. A simple "one-step" protocol provides a composite measure of phagocytosis and killing, while a "two-step" protocol that separates extracellular and intracellular bacteria allows calculation of rate constants for both of these processes. We also present a method for selectively monitoring the long-term survival of bacteria within the phagosome. This may have application in identifying resistant strains and searching for compounds that sensitize pathogens to destruction.


Subject(s)
Host-Pathogen Interactions/immunology , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis , Algorithms , Cell Survival , Defense Mechanisms , Humans , Models, Theoretical , Neutrophils/metabolism , Phagosomes/metabolism , Staphylococcus aureus/immunology
15.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31581149

ABSTRACT

The RBC storage lesion is a multiparametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of NADP(H) were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBC oxidative status after restoration of body temperature constitutes a sensitive method for detecting storage-related alterations that has the potential to improve the quality of stored RBCs for transfusion.


Subject(s)
Erythrocytes/metabolism , Hot Temperature , NADP/metabolism , Oxidative Stress , Adult , Female , Humans , Inosine/administration & dosage , Male , Middle Aged , Pyruvic Acid/administration & dosage
16.
Free Radic Biol Med ; 86: 133-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26006104

ABSTRACT

Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways.


Subject(s)
Hypochlorous Acid/chemistry , Leukocyte L1 Antigen Complex/chemistry , Amino Acid Sequence , Child, Preschool , Cystic Fibrosis/microbiology , Humans , Infant , Leukocyte L1 Antigen Complex/physiology , Molecular Sequence Data , Neutrophils/immunology , Neutrophils/microbiology , Oxidation-Reduction , Oxidative Stress , Protein Binding , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development
17.
Methods Mol Biol ; 1124: 291-306, 2014.
Article in English | MEDLINE | ID: mdl-24504960

ABSTRACT

This chapter describes two methods for measuring the bactericidal activity of neutrophils. These are a new simple fluorescence-based assay, which quantifies bactericidal activity by measuring changes in bacterial fluorescence associated with a loss of membrane potential over time, and a more traditional colony counting protocol. Two variations of these techniques are presented: a "one-step" protocol providing a composite measure of phagocytosis and killing, and a "two-step" protocol that allows calculation of separate rate constants for both of these processes.


Subject(s)
Bacteria/immunology , Neutrophils/immunology , Phagocytosis/immunology , Colony-Forming Units Assay , Fluorometry/methods , Humans , Staphylococcus aureus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL