Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 537(7621): 544-547, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27580029

ABSTRACT

Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.


Subject(s)
Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Fumarates/metabolism , Animals , Cell Movement , Cells, Cultured , Fumarate Hydratase/deficiency , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , HEK293 Cells , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mesoderm/metabolism , Mice , MicroRNAs/genetics , Transcription Factors/metabolism , Transcriptome
3.
Adv Genet ; 70: 145-75, 2010.
Article in English | MEDLINE | ID: mdl-20920748

ABSTRACT

Genomic imprinting represents a form of epigenetic control of gene expression in which one allele of a gene is preferentially expressed according to the parent-of-origin of the allele. Genomic imprinting plays an important role in normal growth and development. Disruption of imprinting can result in a number of human imprinting syndromes and predispose to cancer. In this chapter, we describe a number of human imprinting syndromes to illustrate the concepts of genomic imprinting and how loss of imprinting of imprinted genes their relationship to human neoplasia.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Genomic Imprinting , Neoplasms/genetics , Animals , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/physiopathology , Chromatin/genetics , CpG Islands/genetics , DNA Copy Number Variations , Diabetes Mellitus/genetics , Diabetes Mellitus/physiopathology , Female , Humans , Male , Mutation , Reproductive Techniques, Assisted/adverse effects , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/physiopathology , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL