Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 17(3): e1009413, 2021 03.
Article in English | MEDLINE | ID: mdl-33705496

ABSTRACT

SARS-CoV-2 virus is transmitted in closed settings to people in contact with COVID-19 patients such as healthcare workers and household contacts. However, household person-to-person transmission studies are limited. Households participating in an ongoing cohort study of influenza incidence and prevalence in rural Egypt were followed. Baseline enrollment was done from August 2015 to March 2017. The study protocol was amended in April 2020 to allow COVID-19 incidence and seroprevalence studies. A total of 290 households including 1598 participants were enrolled and followed from April to October 2020 in four study sites. When a participant showed respiratory illness symptoms, a serum sample and a nasal and an oropharyngeal swab were obtained. Swabs were tested by RT-PCR for SARS-CoV-2 infection. If positive, the subject was followed and swabs collected on days three, six, nine, and 14 after the first swab day and a serum sample obtained on day 14. All subjects residing with the index case were swabbed following the same sampling schedule. Sera were collected from cohort participants in October 2020 to assess seroprevalence. Swabs were tested by RT-PCR. Sera were tested by Microneutralization Assay to measure the neutralizing antibody titer. Incidence of COVID-19, household secondary attack rate, and seroprevalence in the cohort were determined. The incidence of COVID-19 was 6.9% and the household secondary attack rate was 89.8%. Transmission within households occurred within two-days of confirming the index case. Infections were asymptomatic or mild with symptoms resolving within 10 days. The majority developed a neutralizing antibody titer by day 14 post onset. The overall seroprevalence among cohort participants was 34.8%. These results suggest that within-household transmission is high in Egypt. Asymptomatic or mild illness is common. Most infections seroconvert and have a durable neutralizing antibody titer.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/transmission , Adolescent , Adult , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Child , Cohort Studies , Egypt/epidemiology , Family , Female , Humans , Incidence , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Seroepidemiologic Studies , Young Adult
2.
Chem Biodivers ; 20(4): e202201045, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36811152

ABSTRACT

Cestrum diurnum L. (Solanaceae) is a fragrant ornamental tree cultivated in different parts around the world. In this study, the essential oil (EO) of the aerial parts was extracted by hydrodistillation (HD), steam distillation (SD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis of the three EOs revealed that phytol represents the major component in SD-EO and MAHD-EO (40.84 and 40.04 %, respectively); while in HD-EO it only represented 15.36 %. The SD-EO showed a strong antiviral activity against HCoV-229E with IC50 of 10.93 µg/mL, whereas, MAHD-EO and HD-EO showed a moderate activity with IC50 values of 119.9 and 148.2 µg/mL, respectively. The molecular docking of EO major components: phytol, octadecyl acetate and tricosane showed a strong binding to coronavirus 3-CL (pro). Moreover, the three EOs (50 µg/mL) decreased the levels of NO, IL-6 and TNF-α and suppressed IL-6 and TNF-α gene expression in LPS-induced inflammation model in RAW264.7 macrophage cell lines.


Subject(s)
Cestrum , Coronavirus 229E, Human , Oils, Volatile , Cestrum/chemistry , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6 , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Oils, Volatile/chemistry , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha , Antiviral Agents/chemistry , Antiviral Agents/pharmacology
3.
Molecules ; 28(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241923

ABSTRACT

Infectious diseases caused by viruses and bacteria are a major public health concern worldwide, with the emergence of antibiotic resistance, biofilm-forming bacteria, viral epidemics, and the lack of effective antibacterial and antiviral agents exacerbating the problem. In an effort to search for new antimicrobial agents, this study aimed to screen antibacterial and antiviral activity of the total methanol extract and its various fractions of Pulicaria crispa (P. crispa) aerial parts. The P. crispa hexane fraction (HF) was found to have the strongest antibacterial effect against both Gram-positive and Gram-negative bacteria, including biofilm producers. The HF fraction reduced the expression levels of penicillin binding protein (PBP2A) and DNA gyrase B enzymes in Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Additionally, the HF fraction displayed the most potent antiviral activity, especially against influenza A virus, affecting different stages of the virus lifecycle. Gas chromatography/mass spectrometry (GC/MS) analysis of the HF fraction identified 27 compounds, mainly belonging to the sterol class, with ß-sitosterol, phytol, stigmasterol, and lupeol as the most abundant compounds. The in silico study revealed that these compounds were active against influenza A nucleoprotein and polymerase, PBP2A, and DNA gyrase B. Overall, this study provides valuable insights into the chemical composition and mechanism of action of the P. crispa HF fraction, which may lead to the development of more effective treatments for bacterial and viral infections.


Subject(s)
Asteraceae , Pulicaria , Viruses , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Pulicaria/chemistry , DNA Gyrase/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Bacteria , Biofilms , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Molecules ; 27(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36144662

ABSTRACT

We synthesized a set of small molecules using a molecular hybridization approach with good yields. The antiviral properties of the synthesized conjugates against the SAR-CoV-2 virus were investigated and their cytotoxicity was also determined. Among all the synthesized conjugates, compound 9f showed potential against SARS-CoV-2 and low cytotoxicity. The conjugates' selectivity indexes (SIs) were determined to correlate the antiviral properties and cytotoxicity. The observed biological data were further validated using computational studies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation
5.
Molecules ; 26(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34684763

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, the causative agent of coronavirus disease (COVID-19)) has caused relatively high mortality rates in humans throughout the world since its first detection in late December 2019, leading to the most devastating pandemic of the current century. Consequently, SARS-CoV-2 therapeutic interventions have received high priority from public health authorities. Despite increased COVID-19 infections, a vaccine or therapy to cover all the population is not yet available. Herein, immunoinformatics and custommune tools were used to identify B and T-cells epitopes from the available SARS-CoV-2 sequences spike (S) protein. In the in silico predictions, six B cell epitopes QTGKIADYNYK, TEIYQASTPCNGVEG, LQSYGFQPT, IRGDEVRQIAPGQTGKIADYNYKLPD, FSQILPDPSKPSKRS and PFAMQMAYRFNG were cross-reacted with MHC-I and MHC-II T-cells binding epitopes and selected for vaccination in experimental animals for evaluation as candidate vaccine(s) due to their high antigenic matching and conserved score. The selected six peptides were used individually or in combinations to immunize female Balb/c mice. The immunized mice raised reactive antibodies against SARS-CoV-2 in two different short peptides located in receptor binding domain and S2 region. In combination groups, an additive effect was demonstrated in-comparison with single peptide immunized mice. This study provides novel epitope-based peptide vaccine candidates against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , SARS-CoV-2/metabolism , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
6.
Molecules ; 26(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34641388

ABSTRACT

In response to the urgent need to control Coronavirus disease 19 (COVID-19), this study aims to explore potential anti-SARS-CoV-2 agents from natural sources. Moreover, cytokine immunological responses to the viral infection could lead to acute respiratory distress which is considered a critical and life-threatening complication associated with the infection. Therefore, the anti-viral and anti-inflammatory agents can be key to the management of patients with COVID-19. Four bioactive compounds, namely ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were isolated from the leaves of Pimenta dioica (L.) Merr (ethyl acetate extract) and identified using spectroscopic evidence. Furthermore, molecular docking and dynamics simulations were performed for the isolated and identified compounds (1-4) against SARS-CoV-2 main protease (Mpro) as a proposed mechanism of action. Furthermore, all compounds were tested for their half-maximal cytotoxicity (CC50) and SARS-CoV-2 inhibitory concentrations (IC50). Additionally, lung toxicity was induced in rats by mercuric chloride and the effects of treatment with P. dioca aqueous extract, ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were recorded through measuring TNF-α, IL-1ß, IL-2, IL-10, G-CSF, and genetic expression of miRNA 21-3P and miRNA-155 levels to assess their anti-inflammatory effects essential for COVID-19 patients. Interestingly, rutin 2, gallic acid 3, and chlorogenic acid 4 showed remarkable anti-SARS-CoV-2 activities with IC50 values of 31 µg/mL, 108 µg/mL, and 360 µg/mL, respectively. Moreover, the anti-inflammatory effects were found to be better in ferulic acid 1 and rutin 2 treatments. Our results could be promising for more advanced preclinical and clinical studies especially on rutin 2 either alone or in combination with other isolates for COVID-19 management.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Pimenta , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Chlorocebus aethiops , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Coumaric Acids/isolation & purification , Coumaric Acids/pharmacology , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Pimenta/chemistry , Plant Extracts/chemistry , Rats , Rutin/isolation & purification , Rutin/pharmacology , Vero Cells
7.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30381492

ABSTRACT

Recently, two genetically distinct influenza viruses were detected in bats in Guatemala and Peru. We conducted influenza A virus surveillance among four bat species in Egypt. Out of 1,202 swab specimens, 105 were positive by real-time PCR. A virus was successfully isolated in eggs and propagated in MDCK cells in the presence of N-tosyl-l-phenylalanine chloromethyl ketone-treated trypsin. Genomic analysis revealed that the virus was phylogenetically distinct from all other influenza A viruses. Analysis of the hemagglutinin gene suggested a common ancestry with other H9 viruses, and the virus showed a low level of cross-reactivity with serum raised against H9N2 viruses. Bats were seropositive for the isolated viruses. The virus replicated in the lungs of experimentally infected mice. While it is genetically distinct, this virus shares several avian influenza virus characteristics suggesting a more recent avian host origin.IMPORTANCE Through surveillance, we isolated and characterized an influenza A virus from Egyptian fruit bats. This virus had an affinity to avian-like receptors but was also able to infect mice. Our findings indicate that bats may harbor a diversity of influenza A viruses. Such viruses may have the potential to cross the species barrier to infect other species, including domestic birds, mammals, and, possibly, humans.


Subject(s)
Chiroptera/virology , Influenza A virus/classification , Orthomyxoviridae Infections/immunology , RNA, Viral/genetics , Sequence Analysis, RNA/methods , Animals , Antibodies, Viral/metabolism , Chickens , Dogs , Egypt , Influenza A virus/genetics , Influenza A virus/isolation & purification , Lung/virology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/virology , Phylogeny
8.
Arch Virol ; 162(3): 687-700, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27864633

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.


Subject(s)
Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza, Human/virology , Poultry Diseases/virology , Animals , Chickens , Disease Outbreaks , Egypt/epidemiology , Humans , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza, Human/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology , Virulence
9.
Nat Prod Res ; : 1-7, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563220

ABSTRACT

Recently, the world faced many epidemics which were caused by viral respiratory pathogens. Marine creatures including Asteroidea class have been one of the recent research topics due to their diverse and complex secondary metabolites. Some of these constituents exhibit antiviral activities. The present study aimed to extract and identify the potential antiviral compounds from Pentaceraster cumingi, Astropecten polyacanthus and Pentaceraster mammillatus. The results showed that promising activity of the methanolic extract of P. cumingi with 50% inhibitory concentration (IC50) of 3.21 mg/ml against MERS-CoV with a selective index (SI) of 13.975. The biochemical components of the extracts were identified by GC/MS analysis. The Molecular docking study highlighted the virtual mechanism of binding the identified compounds towards three PDB codes of MERS-CoV non-structural protein 10/16. Interestingly, 2-mono Linolein showed promising binding energy of -14.75 Kcal/mol with the second PDB code (5YNI) and -15.22 Kcal/mol with the third PDB code (5YNQ).

10.
PLoS One ; 19(4): e0301086, 2024.
Article in English | MEDLINE | ID: mdl-38662719

ABSTRACT

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Subject(s)
Antiviral Agents , Iridoids , Molecular Docking Simulation , Olea , Plant Extracts , Plant Leaves , Polyphenols , SARS-CoV-2 , Olea/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Computer Simulation , COVID-19 Drug Treatment , Luteolin/pharmacology , Luteolin/chemistry , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , Apigenin/pharmacology , Apigenin/chemistry
11.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254071

ABSTRACT

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Colchicine/pharmacology , Pilocarpine , Influenza, Human/drug therapy , Molecular Docking Simulation , Seasons , Phytochemicals/pharmacology , Atropine , Antiviral Agents/pharmacology
12.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615430

ABSTRACT

Researchers worldwide are looking for molecules that might disrupt the COVID-19 life cycle. Endoribonuclease, which is responsible for processing viral RNA to avoid detection by the host defense system, and helicase, which is responsible for unwinding the RNA helices for replication, are two key non-structural proteins. This study performs a hierarchical structure-based virtual screening approach for NSP15 and helicase to reach compounds with high binding probabilities. In this investigation, we incorporated a variety of filtering strategies for predicting compound interactions. First, we evaluated 756,275 chemicals from four databases using a deep learning method (NCI, Drug Bank, Maybridge, and COCONUT). Following that, two docking techniques (extra precision and induced fit) were utilized to evaluate the compounds' binding affinity, followed by molecular dynamic simulation supported by the MM-GBSA free binding energy calculation. Remarkably, two compounds (90616 and CNP0111740) exhibited high binding affinity values of -66.03 and -12.34 kcal/mol for helicase and NSP15, respectively. The VERO-E6 cell line was employed to test their in vitro therapeutic impact. The CC50 for CNP0111740 and 90616 were determined to be 102.767 µg/ml and 379.526 µg/ml, while the IC50 values were 140.176 µg/ml and 5.147 µg/ml, respectively. As a result, the selectivity index for CNP0111740 and 90616 is 0.73 and 73.73, respectively. Finally, these compounds were found to be novel, effective inhibitors for the virus; however, further in vivo validation is needed.Communicated by Ramaswamy H. Sarma.

13.
Arab J Chem ; 16(5): 104676, 2023 May.
Article in English | MEDLINE | ID: mdl-36811068

ABSTRACT

Chitosan (CS) is a biopolymer and has reactive amine/hydroxyl groups facilitated its modifications. The purpose of this study is improvement of (CS) physicochemical properties and its capabilities as antiviral and antitumor through modification with 1-(2-oxoindolin-3-ylidene)thiosemicarbazide (3A) or 1-(5-fluoro-2-oxoindolin-3-ylidene)thiosemicarbazide (3B) via crosslinking of poly(ethylene glycol)diglycidylether (PEGDGE) using microwave-assisted as green technique gives (CS-I) and (CS-II) derivatives. However, (CS) derivatives nanoparticles (CS-I NPs) and (CS-II NPs) are synthesized via ionic gelation technique using sodium tripolyphosphate (TPP). Structures of new (CS) derivatives are characterized using different tools. The anticancer, antiviral efficiencies and molecular docking of (CS) and its derivatives are assayed. (CS) derivatives and its nanoparticles show enhancement in cell inhibition toward (HepG-2 and MCF-7) cancer cells in comparison with (CS). (CS-II NPs) reveals the lowest IC50 values are 92.70 ± 2.64 µg/mL and 12.64 µ g/mL against (HepG-2) cell and SARS-CoV-2 (COVID-19) respectively and the best binding affinity toward corona virus protease receptor (PDB ID 6LU7) -5.71 kcal / mol. Furthermore, (CS-I NPs) shows the lowest cell viability% 14.31 ± 1.48 % and the best binding affinity -9.98 kcal/moL against (MCF-7) cell and receptor (PDB ID 1Z11) respectively. Results of this study demonstrated that (CS) derivatives and its nanoparticles could be potentially employed for biomedical applications.

14.
Eur J Med Chem ; 258: 115563, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37329713

ABSTRACT

Microwave-assisted reaction of 3,5-bis((E)-ylidene)-1-phosphonate-4-piperidones 3a‒g with azomethine ylide (produced through interaction of isatins 4 and sarcosine 5) cycloaddition afforded the corresponding (dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidin]-1″-yl)phosphonates 6a‒l in excellent yields (80-95%). Structure of the synthesized agents was evidenced by single crystal X-ray studies of 6d, 6i and 6l. Some of the synthesized agents revealed promising anti-SARS-CoV-2 properties in the viral infected Vero-E6 cell technique with noticeable selectivity indices. Compounds 6g and 6b are the most promising agents synthesized (R = 4-BrC6H4, Ph; R' = H, Cl, respectively) with considerable selectivity index values. Mpro-SARS-CoV-2 inhibitory properties supported the anti-SARS-CoV-2 observations of the potent analogs synthesized. Molecular docking studies (PDB ID: 7C8U) are consistent with the Mpro inhibitory properties. The presumed mode of action was supported by both experimentally investigated Mpro-SARS-CoV-2 inhibitory properties and explained by docking observations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Molecular Docking Simulation , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Dynamics Simulation
15.
Vaccines (Basel) ; 11(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38005960

ABSTRACT

Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.

16.
Sci Rep ; 13(1): 1612, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709362

ABSTRACT

The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and ß-carboline (ßC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.


Subject(s)
Alkaloids , Influenza A virus , Influenza, Human , Animals , Humans , Antiviral Agents/pharmacology , Strychnine/pharmacology , Harmaline/pharmacology , Ligands , Influenza A virus/physiology , Alkaloids/pharmacology , Influenza, Human/drug therapy , Sulfates/pharmacology , Virus Replication
17.
J Genet Eng Biotechnol ; 21(1): 65, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37211584

ABSTRACT

BACKGROUND: SARS-CoV-2 infection involves disturbing multiple molecular pathways related to immunity and cellular functions. PIM1 is a serine/threonine-protein kinase found to be involved in the pathogenesis of several viral infections. One PIM1 substrate, Myc, was reported to interact with TMPRSS2, which is crucial for SARS-CoV-2 cell entry. PIM1 inhibitors were reported to have antiviral activity through multiple mechanisms related to immunity and proliferation. This study aimed to evaluate the antiviral activity of 2-pyridone PIM1 inhibitor against SARS-CoV-2 and its potential role in hindering the progression of COVID-19. It also aimed to assess PIM1 inhibitor's effect on the expression of several genes of Notch signaling and Wnt pathways. In vitro study was conducted on Vero-E6 cells infected by SARS-CoV-2 "NRC-03-nhCoV" virus. Protein-protein interaction of the study genes was assessed to evaluate their relation to cell proliferation and immunity. The effect of 2-pyridone PIM1 inhibitor treatment on viral load and mRNA expression of target genes was assessed at three time points. RESULTS: Treatment with 2-pyridone PIM1 inhibitor showed potential antiviral activity against SARS-CoV-2 (IC50 of 37.255 µg/ml), significantly lowering the viral load. Functional enrichments of the studied genes include negative regulation of growth rate, several biological processes involved in cell proliferation, and Interleukin-4 production, with interleukin-6 as a predicted functional partner. These results suggest an interplay between study genes with relation to cell proliferation and immunity. Following in vitro SARS-CoV-2 infection, Notch pathway genes, CTNNB1, SUMO1, and TDG, were found to be overexpressed compared to uninfected cells. Treatment with 2-pyridone PIM1 inhibitor significantly lowers the expression levels of study genes, restoring Notch1 and BCL9 to the control level while decreasing Notch2 and CTNNB1 below control levels. CONCLUSION: 2-pyridone PIM1 inhibitor could hinder cellular entry of SARS-CoV-2 and modulate several pathways implicated in immunity, suggesting a potential benefit in the development of anti-SARS-CoV-2 therapeutic approach.

18.
RSC Med Chem ; 14(5): 899-920, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37252103

ABSTRACT

Aiming to achieve efficient activity against severe acute respiratory syndrome coronavirus (SARS-CoV-2), the expansion of the structure- and ligand-based drug design approaches was adopted, which has been recently reported by our research group. Purine ring is a corner stone in the development of SARS-CoV-2 main protease (Mpro) inhibitors. The privileged purine scaffold was elaborated to achieve additional affinity based on hybridization and fragment-based approaches. Thus, the characteristic pharmacophoric features that are required for the inhibition of Mpro and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 were utilized along with the crystal structure information of both targets. The designed pathways involved rationalized hybridization with large sulfonamide moieties and a carboxamide fragment for the synthesis of ten new dimethylxanthine derivatives. The synthesis was performed under diverse conditions to afford N-alkylated xanthine derivatives, and cyclization afforded tricyclic compounds. Molecular modeling simulations were used to confirm and gain insights into the binding interactions at both targets' active sites. The merit of designed compounds and the in silico studies resulted in the selection of three compounds that were evaluated in vitro to estimate their antiviral activity against SARS-CoV-2 (compounds 5, 9a and 19 with IC50 values of 38.39, 8.86 and 16.01 µM, respectively). Furthermore, oral toxicity of the selected antiviral candidates was predicted, in addition to cytotoxicity investigations. Compound 9a showed IC50 values of 8.06 and 3.22 µM against Mpro and RdRp of SARS-CoV-2, respectively, in addition to promising molecular dynamics stability in both target active sites. The current findings encourage further specificity evaluations of the promising compounds for confirming their specific protein targeting.

19.
Vaccines (Basel) ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37766075

ABSTRACT

Controlling avian influenza viruses (AIVs) is mainly based on culling of the infected bird flocks or via the implementation of inactivated vaccines in countries where AIVs are considered to be endemic. Over the last decade, several avian influenza virus subtypes, including highly pathogenic avian influenza (HPAI) H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b and the recent H5N1 clade 2.3.4.4b, have been reported among poultry populations in Egypt. This demanded the utilization of a nationwide routine vaccination program in the poultry sector. Antigenic differences between available avian influenza vaccines and the currently circulating H5Nx strains were reported, calling for an updated vaccine for homogenous strains. In this study, three H5Nx vaccines were generated by utilizing the reverse genetic system: rgH5N1_2.3.4.4, rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2. Further, the immunogenicity and the cross-reactivity of the generated inactivated vaccines were assessed in the chicken model against a panel of homologous and heterologous H5Nx HPAIVs. Interestingly, the rgH5N1_2.3.4.4 induced high immunogenicity in specific-pathogen-free (SPF) chicken and could efficiently protect immunized chickens against challenge infection with HPAIV H5N1_2.3.4.4, H5N8_2.3.4.4 and H5N1_2.2.1.2. In parallel, the rgH5N1_2.2.1.2 could partially protect SPF chickens against infection with HPAIV H5N1_2.3.4.4 and H5N8_2.3.4.4. Conversely, the raised antibodies to rgH5N1_2.3.4.4 could provide full protection against HPAIV H5N1_2.3.4.4 and HPAIV H5N8_2.3.4.4, and partial protection (60%) against HPAIV H5N1_2.2.1.2. Compared to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2 vaccines, chickens vaccinated with rgH5N1_2.3.4.4 showed lower viral shedding following challenge infection with the predefined HPAIVs. These data emphasize the superior immunogenicity and cross-protective efficacy of the rgH5N1_2.3.4.4 in comparison to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2.

20.
Sci Rep ; 12(1): 13337, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922447

ABSTRACT

Researchers are focused on discovering compounds that can interfere with the COVID-19 life cycle. One of the important non-structural proteins is endoribonuclease since it is responsible for processing viral RNA to evade detection of the host defense system. This work investigates a hierarchical structure-based virtual screening approach targeting NSP15. Different filtering approaches to predict the interactions of the compounds have been included in this study. Using a deep learning technique, we screened 823,821 compounds from five different databases (ZINC15, NCI, Drug Bank, Maybridge, and NCI Diversity set III). Subsequently, two docking protocols (extra precision and induced fit) were used to assess the binding affinity of the compounds, followed by molecular dynamic simulation supported by the MM-GBSA free binding energy. Interestingly, one compound (ZINC000104379474) from the ZINC15 database has been found to have a good binding affinity of - 7.68 kcal/Mol. The VERO-E6 cell line was used to investigate its therapeutic effect in vitro. Half-maximal cytotoxic concentration and Inhibitory concentration 50 were determined to be 0.9 mg/ml and 0.01 mg/ml, respectively; therefore, the selectivity index is 90. In conclusion, ZINC000104379474 was shown to be a good hit for targeting the virus that needs further investigations in vivo to be a drug candidate.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoribonucleases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL