ABSTRACT
Bovicola ovis, commonly known as the sheep-biting louse, is an ectoparasite that adversely affects the sheep industry. Sheep louse infestation lowers the quality of products, including wool and leather, causing a loss of approximately AUD 123M per annum in Australia alone. The lack of a high-quality genome assembly for the sheep-biting louse, as well as any closely related livestock lice, has hindered the development of louse research and management control tools. In this study, we present the assembly of B. ovis with a genome size of ~123 Mbp based on a nanopore long-read sequencing library and Illumina RNA sequencing, complemented with a chromosome-level scaffolding using the Pore-C multiway chromatin contact dataset. Combining multiple alignment and gene prediction tools, a comprehensive annotation on the assembled B. ovis genome was conducted and recalled 11,810 genes as well as other genomic features including orf, ssr, rRNA and tRNA. A manual curation using alignment with the available closely related louse species, Pediculus humanus, increased the number of annotated genes to 16,024. Overall, this study reported critical genetic resources and biological insights for the advancement of sheep louse research and the development of sustainable control strategies in the sheep industry.
Subject(s)
Nanopore Sequencing , Animals , Nanopore Sequencing/methods , Sheep/parasitology , Molecular Sequence Annotation , Chromosomes/genetics , Sheep Diseases/parasitology , GenomeABSTRACT
East Coast fever (ECF), caused by Theileria parva, is the most important tick-borne disease of cattle in sub-Saharan Africa. Practical disadvantages associated with the currently used live-parasite vaccine could be overcome by subunit vaccines. An 80-aa polypeptide derived from the C-terminal portion of p67, a sporozoite surface Ag and target of neutralizing Abs, was the focus of the efforts on subunit vaccines against ECF and subjected to several vaccine trials with very promising results. However, the vaccination regimen was far from optimized, involving three inoculations of 450 µg of soluble p67C (s-p67C) Ag formulated in the Seppic adjuvant Montanide ISA 206 VG. Hence, an improved formulation of this polypeptide Ag is needed. In this study, we report on two nanotechnologies that enhance the bovine immune responses to p67C. Individually, HBcAg-p67C (chimeric hepatitis B core Ag virus-like particles displaying p67C) and silica vesicle (SV)-p67C (s-p67C adsorbed to SV-140-C18, octadecyl-modified SVs) adjuvanted with ISA 206 VG primed strong Ab and T cell responses to p67C in cattle, respectively. Coimmunization of cattle (Bos taurus) with HBcAg-p67C and SV-p67C resulted in stimulation of both high Ab titers and CD4 T cell response to p67C, leading to the highest subunit vaccine efficacy we have achieved to date with the p67C immunogen. These results offer the much-needed research depth on the innovative platforms for developing effective novel protein-based bovine vaccines to further the advancement.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Nanotechnology/methods , Protozoan Vaccines/immunology , Theileria parva/physiology , Theileriasis/immunology , Tick-Borne Diseases/immunology , Animals , Antibodies, Protozoan/blood , Cattle , Hepatitis B virus/chemistry , Hepatitis B virus/genetics , Mice , Mineral Oil/administration & dosage , Nanoparticles/chemistry , Protozoan Proteins/genetics , Protozoan Vaccines/genetics , RAW 264.7 Cells , Silicon Dioxide/chemistry , Ticks , Vaccination , Vaccines, Subunit , Viral Core Proteins/chemistry , Viral Core Proteins/geneticsABSTRACT
Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses.
Subject(s)
Antigens/metabolism , Clay/chemistry , Immunity, Humoral , Nanoparticles/chemistry , Animals , Antigens/ultrastructure , Cattle , Cell Proliferation , Female , Immunization , Immunologic Memory , Mice, Inbred C57BL , Nanoparticles/ultrastructure , Particle Size , Serum Albumin, Bovine/metabolism , T-Lymphocytes/cytologyABSTRACT
BACKGROUND: While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). RESULTS: The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. CONCLUSIONS: This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.
Subject(s)
Herpesviridae/genetics , Animals , Genome, Viral/genetics , Herpesviridae/classification , Open Reading Frames/genetics , Viral Proteins/geneticsABSTRACT
Mycoplasma bovis is a pathogen of emerging significance in cattle throughout the world that is causing a range of diseases, including mastitis, arthritis, and pneumonia. The limited availability and efficacy of current diagnostic and prophylactic tools for its control and its increasing antimicrobial resistance are contributing to its increasing importance in beef and dairy cattle. We have developed an indirect IgG enzyme-linked immunosorbent assay (ELISA) based on a recombinant fragment of the MilA protein and have shown its potential as an effective diagnostic tool. To more comprehensively estimate the diagnostic sensitivity and specificity of this IgG ELISA for detection of infection with M. bovis in cattle and to define a suitable cutoff for use in the field, we further assessed its performance in experimentally infected calves in a closed beef herd and by applying Bayesian latent class modeling to laboratory testing results from 7,448 cattle entering Australian feedlots. The most effective cutoff points were estimated to be 68.6 antibody units (AU) for experimentally infected calves and to be 58.7 AU for a closed adult herd. Under field conditions, in feedlot cattle the globally optimal cutoff was estimated to be 105 AU. At this cutoff, the diagnostic sensitivity was 94.3% (95% probability interval [PI], 89.9% to 99.6%) with a diagnostic specificity of 94.4% (95% PI, 90.3% to 99.6%). Applying this 105 AU cutoff, 13.1% of cattle were seropositive for infection with M. bovis on entry into feedlots, and 73.5% were seropositive when followed up approximately 6 weeks later suggesting a high risk of infection shortly after entry into feedlots.
Subject(s)
Antibodies, Bacterial/blood , Cattle Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Mycoplasma Infections/veterinary , Mycoplasma bovis/immunology , Animals , Australia , Cattle , Mycoplasma Infections/diagnosis , Sensitivity and SpecificityABSTRACT
BACKGROUND: Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. METHODS: Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. RESULTS: Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. CONCLUSIONS: The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome.
Subject(s)
Genetic Loci , Genome, Viral , Herpesvirus 1, Meleagrid/genetics , Animals , Chickens , Chromosomes, Artificial, Bacterial , DNA Transposable Elements , Fibroblasts/virology , Mutagenesis, Insertional , TransfectionABSTRACT
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek's disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Subject(s)
Genes, Viral , Herpesvirus 1, Meleagrid/genetics , Herpesvirus 1, Meleagrid/physiology , Mutation , Sequence Deletion , Virus Replication , Animals , Cells, Cultured , Chickens , DNA, Viral/chemistry , DNA, Viral/genetics , Fibroblasts/virology , Molecular Sequence Data , Reverse Genetics , Sequence Analysis, DNAABSTRACT
Enterohemorrhagic Escherichia coli (EHEC) is a Shiga-toxigenic pathogen capable of inducing severe forms of enteritis (e.g., hemorrhagic colitis) and extraintestinal sequelae (e.g., hemolytic-uremic syndrome). The molecular basis of colonization of human and animal hosts by EHEC is not yet completely understood, and an improved understanding of EHEC mucosal adherence may lead to the development of interventions that could disrupt host colonization. FdeC, also referred to by its IHE3034 locus tag ECOK1_0290, is an intimin-like protein that was recently shown to contribute to kidney colonization in a mouse urinary tract infection model. The expression of FdeC is tightly regulated in vitro, and FdeC shows promise as a vaccine candidate against extraintestinal E. coli strains. In this study, we characterized the prevalence, regulation, and function of fdeC in EHEC. We showed that the fdeC gene is conserved in both O157 and non-O157 EHEC and encodes a protein that is expressed at the cell surface and promotes biofilm formation under continuous-flow conditions in a recombinant E. coli strain background. We also identified culture conditions under which FdeC is expressed and showed that minor alterations of these conditions, such as changes in temperature, can significantly alter the level of FdeC expression. Additionally, we demonstrated that the transcription of the fdeC gene is repressed by the global regulator H-NS. Taken together, our data suggest a role for FdeC in EHEC when it grows at temperatures above 37°C, a condition relevant to its specialized niche at the rectoanal junctions of cattle.
Subject(s)
Adhesins, Escherichia coli/biosynthesis , Bacterial Proteins/metabolism , Biofilms/growth & development , DNA-Binding Proteins/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/radiation effects , Gene Expression Regulation, Bacterial/radiation effects , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/physiology , Gene Expression Profiling , TemperatureABSTRACT
To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.
ABSTRACT
Bovine respiratory disease (BRD) causes major losses in feedlot cattle worldwide. A genetic component for BRD resistance in feedlot cattle and calves has been reported in a number of studies, with heritabilities ranging from 0.04 to 0.2. These results suggest selection could be used to reduce the incidence of BRD. Genomic selection could be an attractive approach for breeding for BRD resistance, given the phenotype is not likely to be recorded on breeding animals. In this study, we derived GEBVs for BRD resistance and assessed their accuracy in a reasonably large data set recorded for feedlot treatment of BRD (1213 Angus steers, in two feedlots). In fivefold cross validation, genomic predictions were moderately accurate (0.23â ±â 0.01) when a BayesR approach was used. Expansion of this approach to include more animals and a diversity of breeds is recommended to successfully develop a GEBV for BRD resistance in feedlots for the beef industry.
Bovine respiratory disease (BRD) is the major cause of losses in feedlot cattle worldwide. Previous studies have demonstrated that there is a genetic component to resistance to BRD, suggesting that this trait could be improved by selection. Genomic selection, whereby genome wide DNA markers capture most of the genetic variation from the trait, would enable identification of resistant animals early in life through DNA testing, accelerating genetic gains. In this study, we have demonstrated a panel of 50k DNA markers can be used to predict BRD resistance with reasonable accuracy in Angus cattle, enabling early selection for BRD resistance in this breed.
Subject(s)
Bovine Respiratory Disease Complex , Breeding , Disease Resistance , Animals , Cattle/genetics , Cattle/physiology , Male , Bovine Respiratory Disease Complex/genetics , Disease Resistance/genetics , GenomicsABSTRACT
Significant challenges to poultry health are posed by chicken anemia virus (CAV), which induces immunosuppression and causes increased susceptibility to secondary infections. The effective management and containment of CAV within poultry stocks require precise and prompt diagnosis. However, a deficiency persists in the availability of low-cost, rapid, and portable CAV detection devices. In this study, an immunochromatographic lateral-flow test strip-based assay was developed for CAV detection using in-house generated monoclonal antibodies (MABs) against CAV viral protein 1 (VP1). The recombinant truncated VP1 protein (Δ60VP1), with amino acid residues 1 to 60 of the native protein deleted, was produced via a prokaryotic expression system and utilized for immunizing BALB/c mice. Subsequently, high-affinity MABs against Δ60VP1 were generated and screened using conventional hybridoma technology combined with serial dilution assays. Two MABs, MAB1, and MAB3, both binding to distinct epitopes of Δ60VP1, were selected for the development of a lateral-flow assay. Sensitivity analysis demonstrated that the Δ60VP1 antigen could be detected by our homemade lateral-flow assay at concentrations as low as 625 ng/mL, and this sensitivity was maintained for at least 6 mo. The assay exhibited high specificity, as evidenced by its lack of reactivity with surrogate recombinant proteins and the absence of cross-reactivity with other chicken viruses and viral antigens. Comparative analysis with quantitative PCR data demonstrated substantial agreement, with a Kappa coefficient of 0.66, utilizing a sample set comprising 305 clinical chicken serum samples. In conclusion, the first lateral-flow assay for CAV detection was developed in this study, utilizing 2 specific anti-VP1 MABs. It is characterized by simplicity, rapidity, sensitivity, and specificity.
Subject(s)
Chicken anemia virus , Animals , Mice , Chickens , Amino Acids , Antibodies, Monoclonal , Antigens, Viral , Mice, Inbred BALB CABSTRACT
BACKGROUND: Flystrike, primarily caused by Lucilia cuprina, is a major health and welfare issue for sheep wool industries. Current chemical-based controls can have limited effectiveness due to the emergence of resistance in the parasite. RNA interference (RNAi), which uses double-stranded RNA (dsRNA) as a trigger molecule, has been successfully investigated for the development of innovative pest control strategies. Although RNAi offers great potential, the efficient identification, selection of target genes and delivery of dsRNA represent challenges to be overcome for the successful application of RNAi for control of L. cuprina. RESULTS: A primary L. cuprina (blowfly) embryo cell line (BFEC) was established and confirmed as being derived from L. cuprina eggs by PCR and amplicon sequencing. The BFECs were successfully transfected with plasmids and messenger RNA (mRNA) expressing fluorescent reporter proteins and dsRNA using lipid-based transfection reagents. The transfection of dsRNA into BEFC in this study suggested decreased mRNA levels of target gene expression, which suggested RNAi-mediated knockdown. Three of the dsRNAs identified in this study resulted in reductions of in target gene mRNA levels in BFEC and loss of biological fitness by L. cuprina larvae in a feeding bioassay. CONCLUSION: This study confirms that the novel BFEC cell line can be used to improve the efficacy of dsRNA-mediated screening to accelerate the identification of potential target genes in the development of RNAi mediated control approaches for L. cuprina. The research models established in this study are encouraging with respect to the use of RNAi as a blowfly control method, however further improvement and validation are required for field applicationsnot prefect, and could be ongoing developing. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Subject(s)
Larva , RNA Interference , Animals , Larva/genetics , Larva/growth & development , RNA, Double-Stranded/genetics , Cell Line , Insect Control/methods , Sheep , Diptera/genetics , Calliphoridae/genetics , Calliphoridae/growth & development , Genes, InsectABSTRACT
Many thousands and, in some cases, millions of individuals from the major crop and livestock species have been genotyped and phenotyped for the purpose of genomic selection. 'Ultimate genotypes', in which the marker allele haplotypes with the most favorable effects on a target trait or traits in the population are combined together in silico, can be constructed from these datasets. Ultimate genotypes display up to six times the performance of the current best individuals in the population, as demonstrated for net profit in dairy cattle (incorporating a range of economic traits), yield in wheat and 100-seed weight in chickpea. However, current breeding strategies that aim to assemble ultimate genotypes through conventional crossing take many generations. As a hypothetical thought piece, here, we contemplate three future pathways for rapidly achieving ultimate genotypes: accelerated recombination with gene editing, direct editing of whole-genome haplotype sequences and synthetic biology.
ABSTRACT
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
ABSTRACT
Immunization to the model protein antigen ovalbumin (OVA) is investigated using MCM-41 mesoporous silica nanoparticles as a novel vaccine delivery vehicle and adjuvant system in mice. The effects of amino surface functionalization and adsorption time on OVA adsorption to nanoparticles are assessed. Amino-functionalized MCM-41 (AM-41) shows an effect on the amount of OVA binding, with 2.5-fold increase in binding capacity (72 mg OVA/g AM-41) compared to nonfunctionalized MCM-41 (29 mg OVA/g MCM-41). Immunization studies in mice with a 10 µg dose of OVA adsorbed to AM-41 elicits both antibody and cell-mediated immune responses following three subcutaneous injections. Immunizations at a lower 2 µg dose of OVA adsorbed to AM-41 particles results in an antibody response but not cell-mediated immunity. The level of antibody responses following immunization with nanoformulations containing either 2 µg or 10 µg of OVA are only slightly lower than that in mice which receive 50 µg OVA adjuvanted with QuilA, a crude mixture of saponins extracted from the bark of the Quillaja saponaria Molina tree. This is a significant result, since it demonstrates that AM-41 nanoparticles are self-adjuvanting and elicit immune responses at reduced antigen doses in vivo compared to a conventional delivery system. Importantly, there are no local or systemic negative effects in animals injected with AM-41. Histopathological studies of a range of tissue organs show no changes in histopathology of the animals receiving nanoparticles over a six week period. These results establish the biocompatible MCM-41 silica nanoparticles as a new method for vaccine delivery which incorporates a self-adjuvant effect.
Subject(s)
Adjuvants, Immunologic/chemistry , Nanoparticles/chemistry , Ovalbumin/chemistry , Silicon Dioxide/chemistry , Animals , MiceABSTRACT
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Subject(s)
Genome, Viral , Herpesvirus 1, Meleagrid/genetics , Mutagenesis, Insertional , Transposases/genetics , Chromosomes, Artificial, Bacterial/genetics , DNA Transposable Elements , Gene Deletion , Gene Library , Herpesvirus 1, Meleagrid/metabolism , Sequence Analysis, DNA/veterinary , Transposases/metabolismABSTRACT
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case-control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD.
Subject(s)
Cattle Diseases , Coronavirus, Bovine , Nidovirales , Respiratory Tract Diseases , Animals , Cattle , Case-Control Studies , Virome , Trachea , Nose , Coronavirus, Bovine/genetics , MammalsABSTRACT
The MilA ELISA has been identified as a highly effective diagnostic tool for the detection of Mycoplasma bovis specific antibodies and has been validated for serological use in previous studies. This study aimed to estimate the optimal cut-off and corresponding estimates of diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the MilA ELISA for testing bovine serum. Serum samples from 298 feedlot cattle from 14 feedlots across four Australian states were tested on entry into the feedlot and approximately 42 days later. The paired serum samples were tested with the MilA ELISA, BIO K302 (Bio-X Diagnostics, Belgium) and BIO K260 (Bio-X Diagnostics, Belgium). A cut-off of 135 AU was estimated to be optimal using Bayesian latent class analysis with three tests in multiple populations, accounting for conditional dependence between tests. At this cut-off, the DSe and DSp of the MilA ELISA were estimated to be 92.1 % (95 % highest probability density [HPD] interval: 87.4, 95.8) and 95.5 % (95 % HPD: 92.4, 97.8), respectively. The DSes of the BIO K260 and BIO K302 ELISAs were estimated to be 60.5 % (95 % HPD: 54.0, 66.9) and 44.6 % (95 % HPD: 38.7, 50.7), respectively. DSps were 95.6 % (95 % HPD: 92.9, 97.7) and 97.8 % (95 % HPD: 95.9, 99.0), respectively. Mycoplasma bovis seroprevalence was remarkably high at follow-up after 42 days on the feedlots. Overall, this study estimated a cut-off, DSe and DSp for the MilA ELISA with less dependence on prior information than previous analyses and demonstrated that the MilA ELISA has higher DSe than the BIO K260 and BIO K302 assays.
Subject(s)
Cattle Diseases , Mycoplasma bovis , Animals , Antibodies, Bacterial , Australia , Bayes Theorem , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Latent Class Analysis , Sensitivity and Specificity , Seroepidemiologic StudiesABSTRACT
BACKGROUND: Protein expression in Escherichia coli may result in the recombinant protein being expressed as insoluble inclusion bodies. In addition, proteins purified from E. coli contain endotoxins which need to be removed for in vivo applications. The structural protein, E2, from Bovine Viral Diarrhoea Virus (BVDV) is a major immunogenic determinant, and is an ideal candidate as a subunit vaccine. The E2 protein contains 17 cysteine residues creating difficulties in E. coli expression. In this report we outline a procedure for successfully producing soluble and endotoxin-free BVDV E2 protein from inclusion bodies (IB). RESULTS: The expression of a truncated form of BVDV-E2 protein (E2-T1) in E. coli resulted in predominantly aggregated insoluble IB. Solubilisation of E2-T1 with high purity and stability from IB aggregates was achieved using a strong reducing buffer containing 100 mM Dithiothreitol. Refolding by dialysis into 50 mM Tris (pH 7.0) containing 0.2% Igepal CA630 resulted in a soluble but aggregated protein solution. The novel application of a two-phase extraction of inclusion body preparations with Triton X-114 reduced endotoxin in solubilised E2-T1 to levels suitable for in vivo use without affecting protein yields. Dynamic light scattering analyses showed 37.5% of the protein was monomeric, the remaining comprised of soluble aggregates. Mice immunised with E2-T1 developed a high titre antibody response by ELISA. Western hybridisation analysis showed E2-T1 was recognised by sera from immunised mice and also by several BVDV-E2 polyclonal and monoclonal antibodies. CONCLUSION: We have developed a procedure using E. coli to produce soluble E2-T1 protein from IB, and due to their insoluble nature we utilised a novel approach using Triton X-114 to efficiently remove endotoxin. The resultant protein is immunogenic and detectable by BVDV-E2 specific antibodies indicating its usefulness for diagnostic applications and as a subunit vaccine. The optimised E. coli expression system for E2-T1 combined with methodologies for solubilisation, refolding and integrated endotoxin removal presented in this study should prove useful for other vaccine applications.