Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(6): 974-993.e15, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931259

ABSTRACT

14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.


Subject(s)
14-3-3 Proteins , HSP90 Heat-Shock Proteins , Humans , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Binding
2.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31999954

ABSTRACT

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Subject(s)
Autistic Disorder/physiopathology , Cognitive Dysfunction/pathology , Eukaryotic Initiation Factor-4G/physiology , Exons/genetics , Fragile X Mental Retardation Protein/metabolism , Neuroblastoma/pathology , Neurons/pathology , Animals , Behavior, Animal , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Fragile X Mental Retardation Protein/genetics , Male , Mice , Mice, Inbred C57BL , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neurogenesis , Neurons/metabolism , Protein Biosynthesis , RNA Splicing , Tumor Cells, Cultured
3.
Nano Lett ; 24(15): 4641-4648, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579120

ABSTRACT

The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.

4.
Nano Lett ; 24(8): 2437-2443, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354357

ABSTRACT

Nanoantennas capable of large fluorescence enhancement with minimal absorption are crucial for future optical technologies from single-photon sources to biosensing. Efficient dielectric nanoantennas have been designed, however, evaluating their performance at the individual emitter level is challenging due to the complexity of combining high-resolution nanofabrication, spectroscopy and nanoscale positioning of the emitter. Here, we study the fluorescence enhancement in infinity-shaped gallium phosphide (GaP) nanoantennas based on a topologically optimized design. Using fluorescence correlation spectroscopy (FCS), we probe the nanoantennas enhancement factor and observe an average of 63-fold fluorescence brightness enhancement with a maximum of 93-fold for dye molecules in nanogaps between 20 and 50 nm. The experimentally determined fluorescence enhancement of the nanoantennas is confirmed by numerical simulations of the local density of optical states (LDOS). Furthermore, we show that beyond design optimization of dielectric nanoantennas, increased performances can be achieved via tailoring of nanoantenna fabrication.

5.
Nano Lett ; 24(5): 1784-1791, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38265953

ABSTRACT

Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing.

6.
Nano Lett ; 24(21): 6362-6368, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752764

ABSTRACT

Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.

7.
Nat Mater ; 22(8): 970-976, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37349392

ABSTRACT

Photonic bound states in the continuum (BICs) provide a standout platform for strong light-matter coupling with transition metal dichalcogenides (TMDCs) but have so far mostly been implemented as traditional all-dielectric metasurfaces with adjacent TMDC layers, incurring limitations related to strain, mode overlap and material integration. Here, we demonstrate intrinsic strong coupling in BIC-driven metasurfaces composed of nanostructured bulk tungsten disulfide (WS2) and exhibiting resonances with sharp, tailored linewidths and selective enhancement of light-matter interactions. Tuning of the BIC resonances across the exciton resonance in bulk WS2 is achieved by varying the metasurface unit cells, enabling strong coupling with an anticrossing pattern and a Rabi splitting of 116 meV. Crucially, the coupling strength itself can be controlled and is shown to be independent of material-intrinsic losses. Our self-hybridized metasurface platform can readily incorporate other TMDCs or excitonic materials to deliver fundamental insights and practical device concepts for polaritonic applications.

8.
Chem Rev ; 122(19): 15082-15176, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35728004

ABSTRACT

Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.


Subject(s)
Nanostructures , Phonons
9.
Nano Lett ; 23(19): 8891-8897, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37726256

ABSTRACT

Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.

10.
Nano Lett ; 23(11): 5288-5296, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37234018

ABSTRACT

Inspired by transformation optics, we propose a new concept for plasmonic photocatalysis by creating a novel hybrid nanostructure with a plasmonic singularity. Our geometry enables broad and strong spectral light harvesting at the active site of a nearby semiconductor where the chemical reaction occurs. A proof-of-concept nanostructure comprising Cu2ZnSnS4 (CZTS) and Au-Au dimer (t-CZTS@Au-Au) is fabricated via a colloidal strategy combining templating and seeded growth. On the basis of numerical and experimental results of different related hybrid nanostructures, we show that both the sharpness of the singular feature and the relative position to the reactive site play a pivotal role in optimizing photocatalytic activity. Compared with bare CZTS, the hybrid nanostructure (t-CZTS@Au-Au) exhibits an enhancement of the photocatalytic hydrogen evolution rate by up to ∼9 times. The insights gained from this work might be beneficial for designing efficient composite plasmonic photocatalysts for diverse photocatalytic reactions.

11.
Nano Lett ; 23(7): 2651-2658, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36946720

ABSTRACT

Breaking the in-plane geometric symmetry of dielectric metasurfaces allows us to access a set of electromagnetic states termed symmetry-protected quasi-bound states in the continuum (qBICs). Here we demonstrate that qBICs can also be accessed by a symmetry breaking in the permittivity of the comprising materials. While the physical size of atoms imposes a limit on the lowest achievable geometrical asymmetry, weak permittivity modulations due to carrier doping, and electro-optical Pockels and Kerr effects, usually considered insignificant, open the possibility of infinitesimal permittivity asymmetries for on-demand, dynamically tunable resonances of extremely high quality factors. As a proof-of-principle, we probe the excitation of permittivity-asymmetric qBICs (ε-qBICs) using a prototype Si/TiO2 metasurface, in which the asymmetry in the unit cell is provided by the permittivity contrast of the materials. ε-qBICs are also numerically demonstrated in 1D gratings, where quality-factor enhancement and tailored interference phenomena of qBICs are shown via the interplay of geometrical and permittivity asymmetries.

12.
Nano Lett ; 23(7): 2530-2535, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010197

ABSTRACT

Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.

13.
Angew Chem Int Ed Engl ; 63(11): e202319920, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38236010

ABSTRACT

Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.

14.
Opt Express ; 31(2): 2833-2845, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785288

ABSTRACT

Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the anti-resonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.

15.
Nanotechnology ; 34(40)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37399800

ABSTRACT

This article introduces a straightforward approach for the direct synthesis of transfer-free, nanopatterned epitaxial graphene on silicon carbide on silicon substrates. A catalytic alloy tailored to optimal SiC graphitization is pre-patterned with common lithography and lift-off techniques to form planar graphene structures on top of an unpatterned SiC layer. This method is compatible with both electron-beam lithography and UV-lithography, and graphene gratings down to at least ∼100 nm width/space can be realized at the wafer scale. The minimum pitch is limited by the flow of the metal catalyst during the liquid-phase graphitization process. We expect that the current pitch resolution could be further improved by optimizing the metal deposition method and lift-off process.

16.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220343, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37691466

ABSTRACT

Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

17.
J Am Chem Soc ; 144(7): 3039-3049, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35112839

ABSTRACT

Electrochemical CO2 reduction is a promising way to mitigate CO2 emissions and close the anthropogenic carbon cycle. Among products from CO2RR, multicarbon chemicals, such as ethylene and ethanol with high energy density, are more valuable. However, the selectivity and reaction rate of C2 production are unsatisfactory due to the sluggish thermodynamics and kinetics of C-C coupling. The electric field and thermal field have been studied and utilized to promote catalytic reactions, as they can regulate the thermodynamic and kinetic barriers of reactions. Either raising the potential or heating the electrolyte can enhance C-C coupling, but these come at the cost of increasing side reactions, such as the hydrogen evolution reaction. Here, we present a generic strategy to enhance the local electric field and temperature simultaneously and dramatically improve the electric-thermal synergy desired in electrocatalysis. A conformal coating of ∼5 nm of polytetrafluoroethylene significantly improves the catalytic ability of copper nanoneedles (∼7-fold electric field and ∼40 K temperature enhancement at the tips compared with bare copper nanoneedles experimentally), resulting in an improved C2 Faradaic efficiency of over 86% at a partial current density of more than 250 mA cm-2 and a record-high C2 turnover frequency of 11.5 ± 0.3 s-1 Cu site-1. Combined with its low cost and scalability, the electric-thermal strategy for a state-of-the-art catalyst not only offers new insight into improving activity and selectivity of value-added C2 products as we demonstrated but also inspires advances in efficiency and/or selectivity of other valuable electro-/photocatalysis such as hydrogen evolution, nitrogen reduction, and hydrogen peroxide electrosynthesis.

18.
J Am Chem Soc ; 144(31): 14005-14011, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35904545

ABSTRACT

The carbon-carbon (C-C) bond formation is essential for the electroconversion of CO2 into high-energy-density C2+ products, and the precise coupling pathways remain controversial. Although recent computational investigations have proposed that the OC-COH coupling pathway is more favorable in specific reaction conditions than the well-known CO dimerization pathway, the experimental evidence is still lacking, partly due to the separated catalyst design and mechanistic/spectroscopic exploration. Here, we employ density functional theory calculations to show that on low-coordinated copper sites, the *CO bindings are strengthened, and the adsorbed *CO coupling with their hydrogenation species, *COH, receives precedence over CO dimerization. Experimentally, we construct a fragmented Cu catalyst with abundant low-coordinated sites, exhibiting a 77.8% Faradaic efficiency for C2+ products at 300 mA cm-2. With a suite of in situ spectroscopic studies, we capture an *OCCOH intermediate on the fragmented Cu surfaces, providing direct evidence to support the OC-COH coupling pathway. The mechanistic insights of this research elucidate how to design materials in favor of OC-COH coupling toward efficient C2+ production from CO2 reduction.

19.
Opt Lett ; 47(7): 1826-1829, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363745

ABSTRACT

We have studied the nonlinear optical properties of single ß-barium borate nanocrystals, with potential applications as probes in nonlinear sensing and imaging schemes. Our work demonstrates their ability to generate second, third, fourth, and fifth harmonics. The particles' polarization response is studied and compared with simulations based on the bulk nonlinear tensors, with good agreement. Furthermore, the nonlinear susceptibilities of different orders are estimated.

20.
Phys Rev Lett ; 129(26): 267401, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608180

ABSTRACT

Skyrmions endowed with topological protection have been extensively investigated in various platforms including magnetics, ferroelectrics, and liquid crystals, stimulating applications such as memories, logic devices, and neuromorphic computing. While the optical counterpart has been proposed and realized recently, the study of optical skyrmions is still in its infancy. Among the unexplored questions, the investigation of the topology induced robustness against disorder is of substantial importance on both fundamental and practical sides but remains elusive. In this Letter, we manage to generate optical skyrmions numerically in real space with different topological features at will, providing a unique platform to investigate the robustness of various optical skyrmions. A disorder-induced topological state transition is observed for the first time in a family of optical skyrmions composed of six classes with different skyrmion numbers. Intriguingly, the optical skyrmions produced from a vectorial hologram are exceptionally robust against scattering from a random medium, shedding light on topological photonic devices for the generation and manipulation of robust states for applications including imaging and communication.

SELECTION OF CITATIONS
SEARCH DETAIL