Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33577765

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Macaca fascicularis , Spike Glycoprotein, Coronavirus/chemistry , Animals , Antibodies, Neutralizing , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Mice , Mice, Inbred BALB C , Models, Animal , Nanoparticles/administration & dosage , Rabbits , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , T-Lymphocytes/immunology , Viral Load
2.
Nature ; 585(7826): 584-587, 2020 09.
Article in English | MEDLINE | ID: mdl-32698191

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic and no antiviral drug or vaccine is yet available for the treatment of this disease1-3. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro. Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes COVID-19-worldwide but there is no definitive evidence that HCQ is effective for treating COVID-194-7. Here we evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in African green monkey kidney cells (Vero E6) but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to a placebo treatment, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor the combination of HCQ and AZTH showed a significant effect on viral load in any of the analysed tissues. When the drug was used as a pre-exposure prophylaxis treatment, HCQ did not confer protection against infection with SARS-CoV-2. Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral drug for the treatment of COVID-19 in humans.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Cytokines/blood , Disease Models, Animal , Female , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/pharmacology , In Vitro Techniques , Kinetics , Macaca fascicularis , Male , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Pre-Exposure Prophylaxis , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2 , Time Factors , Treatment Failure , Vero Cells , Viral Load/drug effects , COVID-19 Drug Treatment
3.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: mdl-32967005

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
4.
PLoS Comput Biol ; 19(8): e1010721, 2023 08.
Article in English | MEDLINE | ID: mdl-37556476

ABSTRACT

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.


Subject(s)
COVID-19 , Animals , SARS-CoV-2/genetics , Cell Movement , Macaca fascicularis , Primates
5.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35546782

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
6.
J Biol Chem ; 297(1): 100885, 2021 07.
Article in English | MEDLINE | ID: mdl-34146545

ABSTRACT

PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown. Here, we used synchrotron-coupled Fourier transform-IR and deep UV microscopies to determine the presence of PB1-F2 fibers in influenza A virus-infected mice. In order to study the correlation between PB1-F2 structure and the inflammatory response, transgenic mice expressing luciferase under the control of an NF-κB promotor, allowing in vivo monitoring of inflammation, were intranasally instilled with monomeric, fibrillated, or truncated forms of recombinant PB1-F2. Our intravital NF-κB imaging, supported by cytokine quantification, clearly shows the proinflammatory effect of PB1-F2 fibers compared with N-terminal region of PB1-F2 unable to fibrillate. It is noteworthy that instillation of monomeric PB1-F2 of H5N1 virus induced a stronger inflammatory response when compared with prefibrillated PB1-F2 of H1N1 virus, suggesting mechanisms of virulence depending on PB1-F2 sequence. Finally, using whole-body plethysmography to measure volume changes in the lungs, we quantified the effects of the different forms of PB1-F2 on respiratory parameters. Thus, we conclude that PB1-F2-induced inflammation and respiratory distress are tightly correlated with sequence polymorphism and oligomerization status of the protein.


Subject(s)
Orthomyxoviridae Infections/metabolism , Protein Multimerization , Respiration , Signal Transduction , Viral Proteins/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Luciferases/genetics , Luciferases/metabolism , Lung/metabolism , Lung/physiopathology , Lung/virology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae Infections/virology , Polymorphism, Genetic , Promoter Regions, Genetic , Viral Proteins/genetics
7.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Article in English | MEDLINE | ID: mdl-33730053

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Subject(s)
COVID-19/virology , Macaca fascicularis/virology , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Basic Reproduction Number , COVID-19/blood , COVID-19/prevention & control , Cytokines/blood , Disease Models, Animal , Nasopharynx/virology , SARS-CoV-2/drug effects , Trachea/virology , Viral Load , Virus Replication/drug effects
9.
J Immunol ; 193(12): 5883-93, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25385823

ABSTRACT

Swine skin is one of the best structural models for human skin, widely used to probe drug transcutaneous passage and to test new skin vaccination devices. However, little is known about its composition in immune cells, and among them dendritic cells (DC), that are essential in the initiation of the immune response. After a first seminal work describing four different DC subpopulations in pig skin, we hereafter deepen the characterization of these cells, showing the similarities between swine DC subsets and their human counterparts. Using comparative transcriptomic study, classical phenotyping as well as in vivo and in vitro functional studies, we show that swine CD163(pos) dermal DC (DDC) are transcriptomically similar to the human CD14(pos) DDC. CD163(pos) DDC are recruited in inflamed skin, they migrate in inflamed lymph but they are not attracted toward CCL21, and they modestly activate allogeneic CD8 T cells. We also show that CD163(low) DDC are transcriptomically similar to the human CD1a(pos) DDC. CD163(low) DDC migrate toward CCL21, they activate allogeneic CD8 and CD4 T cells and, like their potential human lung counterpart, they skew CD4 T cells toward a Th17 profile. We thus conclude that swine skin is a relevant model for human skin vaccination.


Subject(s)
Chemotaxis/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Langerhans Cells/immunology , Langerhans Cells/metabolism , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Transcriptome , Animals , Antigens, CD1/genetics , Antigens, CD1/metabolism , Antigens, Surface/metabolism , Chemotaxis/genetics , Cytokines/biosynthesis , Gene Expression Profiling , Humans , Immunophenotyping , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Phenotype , Skin/immunology , Swine
10.
Front Immunol ; 14: 1270081, 2023.
Article in English | MEDLINE | ID: mdl-37920468

ABSTRACT

Purinergic receptors and NOD-like receptor protein 3 (NLRP3) inflammasome regulate inflammation and viral infection, but their effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain poorly understood. Here, we report that the purinergic receptor P2X7 and NLRP3 inflammasome are cellular host factors required for SARS-CoV-2 infection. Lung autopsies from patients with severe coronavirus disease 2019 (COVID-19) reveal that NLRP3 expression is increased in host cellular targets of SARS-CoV-2 including alveolar macrophages, type II pneumocytes and syncytia arising from the fusion of infected macrophages, thus suggesting a potential role of NLRP3 and associated signaling pathways to both inflammation and viral replication. In vitro studies demonstrate that NLRP3-dependent inflammasome activation is detected upon macrophage abortive infection. More importantly, a weak activation of NLRP3 inflammasome is also detected during the early steps of SARS-CoV-2 infection of epithelial cells and promotes the viral replication in these cells. Interestingly, the purinergic receptor P2X7, which is known to control NLRP3 inflammasome activation, also favors the replication of D614G and alpha SARS-CoV-2 variants. Altogether, our results reveal an unexpected relationship between the purinergic receptor P2X7, the NLRP3 inflammasome and the permissiveness to SARS-CoV-2 infection that offers novel opportunities for COVID-19 treatment.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Inflammation , Receptors, Purinergic
11.
Front Microbiol ; 13: 932408, 2022.
Article in English | MEDLINE | ID: mdl-36033843

ABSTRACT

The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.

12.
Commun Biol ; 5(1): 542, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661814

ABSTRACT

The well documented association between obesity and the severity of SARS-CoV-2 infection raises the question of whether adipose tissue (AT) is impacted during this infection. Using a model of SARS-CoV-2 infection in cynomolgus macaques, we detected the virus within subcutaneous AT (SCAT) but not in visceral AT (VAT) or epicardial AT on day 7 post-infection. We sought to determine the mechanisms responsible for this selective detection and observed higher levels of angiotensin-converting-enzyme-2 mRNA expression in SCAT than in VAT. Lastly, we evaluated the immunological consequences of SARS-CoV-2 infection on AT: both SCAT and VAT T cells showed a drastic reduction in CD69 expression, a standard marker of resident memory T cell in tissue, that is also involved in the migratory and metabolic properties of T cells. Our results demonstrate that in a model of mild infection, SCAT is selectively infected by SARS-CoV-2 although changes in the immune properties of AT are observed in both SCAT and VAT.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipose Tissue , Animals , Homeostasis , Lymphocytes , Macaca , Subcutaneous Fat/metabolism
13.
Gastro Hep Adv ; 1(3): 393-402, 2022.
Article in English | MEDLINE | ID: mdl-35174366

ABSTRACT

BACKGROUND AND AIMS: Apolipoprotein A1 (A1) and haptoglobin (HP) serum levels are associated with the spread and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We have constructed and validated a multivariable risk calculator (A1HPV6) integrating A1, HP, alpha2-macroglobulin, and gamma glutamyl transferase to improve the performances of virological biomarkers. METHODS: In a prospective observational study of hospitalized patients with nonsevere SARS-CoV-2 infection, A1HPV6 was constructed in 127 patients and validated in 116. The specificity was assessed in 7482 controls representing the general population. The primary diagnostic endpoint was the area under the receiver operating characteristic curve in patients with positive SARS-CoV-2 PCR. The primary prognostic endpoint was the age-and sex-adjusted risk of A1HPV6 to predict patients with WHO-stage > 4 (W > 4) severity. We assessed the kinetics of the A1HPV6 components in a nonhuman primate model (NHP), from baseline to 7 days (D7) after SARS-CoV-2 infection. RESULTS: The area under the receiver operating characteristic curve for A1HPV6 was 0.99 (95% CI 0.97-0.99) in the validation subset, which was not significantly different from that in the construction subset, 0.99 (0.99-0.99; P = .80), like for sensitivity 92% (85-96) vs 94% (88-97; P = .29). A1HPV6 was associated with W > 4, with a significant odds ratio of 1.3 (1.1-1.5; 0.002). In NHP, A1 levels decreased (P < .01) at D2 and normalized at D4; HP levels increased at D2 and peaked at D4. In patients, A1 concentration was very low at D2 vs controls (P < .01) and increased at D14 (P < .01) but was still lower than controls; HP increased at D2 and remained elevated at D14. CONCLUSION: These results validate the diagnostic and prognostic performances of A1HPV6. Similar kinetics of apolipoprotein A1, HP, and alpha-2-macroglobulin were observed in the NHP model. ClinicalTrials.gov number, NCT01927133.

14.
iScience ; 25(4): 104101, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35313622

ABSTRACT

Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials.

15.
Front Immunol ; 13: 855230, 2022.
Article in English | MEDLINE | ID: mdl-35603150

ABSTRACT

Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Child , Cytokines , Humans , Infant, Newborn , Pilot Projects , Primates/genetics , RNA, Viral
16.
Elife ; 112022 07 08.
Article in English | MEDLINE | ID: mdl-35801637

ABSTRACT

The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Primates/metabolism , Spike Glycoprotein, Coronavirus/metabolism
17.
Nat Commun ; 13(1): 5108, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042198

ABSTRACT

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Zika Virus Infection , Zika Virus , Amides , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Macaca fascicularis , Pandemics , Primates , Pyrazines , SARS-CoV-2 , Zika Virus Infection/drug therapy
18.
Cell Rep Med ; 3(10): 100751, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36167072

ABSTRACT

Given the time and resources invested in clinical trials, innovative prediction methods are needed to decrease late-stage failure in vaccine development. We identify combinations of early innate responses that predict neutralizing antibody (nAb) responses induced in HIV-Env SOSIP immunized cynomolgus macaques using various routes of vaccine injection and adjuvants. We analyze blood myeloid cells before and 24 h after each immunization by mass cytometry using a three-step clustering, and we discriminate unique vaccine signatures based on HLA-DR, CD39, CD86, CD11b, CD45, CD64, CD14, CD32, CD11c, CD123, CD4, CD16, and CADM1 surface expression. Various combinations of these markers characterize cell families positively associated with nAb production, whereas CADM1-expressing cells are negatively associated (p < 0.05). Our results demonstrate that monitoring immune signatures during early vaccine development could assist in identifying biomarkers that predict vaccine immunogenicity.


Subject(s)
HIV-1 , Animals , Macaca , Interleukin-3 Receptor alpha Subunit , HIV Antibodies , Antibodies, Neutralizing
19.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233549

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
20.
Med Sci (Paris) ; 37(8-9): 759-772, 2021.
Article in French | MEDLINE | ID: mdl-34080537

ABSTRACT

A vaccine is required to effectively control the COVID-19 pandemic in the mid and long term. The development of vaccines against SARS-CoV-2 was initiated as soon as the genetic sequence of the virus was published, and has evolved at an unprecedented speed, with a first clinical trial launched in March 2020. One year later, more than a dozen of vaccines based on different concepts, with some having been evaluated only in clinical trials so far, are authorized under emergency procedures. Here, we review these vaccines, compare their properties and discuss the challenges they face, including the emergence of viral variants of concern.


TITLE: COVID-19, des vaccins à la vitesse de l'éclair. ABSTRACT: Un vaccin est nécessaire pour endiguer efficacement, à moyen et long terme, une pandémie comme celle de la COVID-19 (coronavirus disease 2019). Le développement de vaccins contre le virus responsable de la maladie, le SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2), a été débuté dès la publication de la séquence du génome viral. Ce développement a progressé à une vitesse sans précédent, avec un premier essai clinique réalisé peu de temps après, en mars 2020. Un an plus tard, une dizaine de vaccins reposant sur des concepts différents, dont certains n'avaient été testés que dans des essais cliniques, sont autorisés dans le cadre de procédures d'urgence. Dans cet article, nous passons en revue ces différents vaccins, nous comparons leurs propriétés et nous discutons les défis auxquels ils sont confrontés, en particulier l'émergence de nouveaux variants viraux.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Drug Development , SARS-CoV-2/immunology , Acceleration , Biomedical Research/methods , Biomedical Research/trends , COVID-19/epidemiology , Drug Development/methods , Drug Development/organization & administration , Drug Development/standards , Emergencies , History, 21st Century , Humans , Pandemics/prevention & control , Public Health/methods , Public Health/trends , Vaccination/methods , Vaccination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL