ABSTRACT
BACKGROUND AND AIMS: Hepatocyte keratin polypeptides 8/18 (K8/K18) are unique among intermediate filaments proteins (IFs) in that their mutation predisposes to, rather than causes, human disease. Mice that overexpress human K18 R90C manifest disrupted hepatocyte keratin filaments with hyperphosphorylated keratins and predisposition to Fas-induced liver injury. We hypothesized that high-throughput screening will identify compounds that protect the liver from mutation-triggered predisposition to injury. APPROACH AND RESULTS: Using A549 cells transduced with a lentivirus K18 construct and high-throughput screening, we identified the SRC-family tyrosine kinases inhibitor, PP2, as a compound that reverses keratin filament disruption and protects from apoptotic cell death caused by K18 R90C mutation at this highly conserved arginine. PP2 also ameliorated Fas-induced apoptosis and liver injury in male but not female K18 R90C mice. The PP2 male selectivity is due to its lower turnover in male versus female livers. Knockdown of SRC but not another kinase target of PP2, protein tyrosine kinase 6, in A549 cells abrogated the hepatoprotective effect of PP2. Phosphoproteomic analysis and validation showed that the protective effect of PP2 associates with Ser/Thr but not Tyr keratin hypophosphorylation, and differs from the sex-independent effect of the Ser/Thr kinase inhibitor PKC412. Inhibition of RAF kinase, a downstream target of SRC, by vemurafenib had a similar protective effect to PP2 in A549 cells and male K18 R90C mice. CONCLUSIONS: PP2 protects, in a male-selective manner, keratin mutation-induced mouse liver injury by inhibiting SRC-triggered downstream Ser/Thr phosphorylation of K8/K18, which is phenocopied by RAF kinase inhibitor vemurafenib. The PP2/vemurafenib-associated findings, and their unique mechanisms of action, further support the potential role of select kinase inhibition as therapeutic opportunities for keratin and other IF-associated human diseases.
Subject(s)
Keratins , src-Family Kinases , Mice , Male , Humans , Animals , Keratins/metabolism , src-Family Kinases/metabolism , Vemurafenib/metabolism , Vemurafenib/pharmacology , Mice, Transgenic , Liver/metabolism , Keratin-8/genetics , Keratin-8/metabolism , Mutation , Keratin-18ABSTRACT
Porphyrias are rare blood disorders caused by genetic defects in the heme biosynthetic pathway and are associated with the accumulation of high levels of porphyrins that become cytotoxic. Porphyrins, due to their amphipathic nature, spontaneously associate into different nanostructures, but very little is known about the cytotoxic effects of these porphyrin nanostructures. Previously, we demonstrated the unique ability of fluorescent biological porphyrins, including protoporphyrin-IX (PP-IX), to cause organelle-selective protein aggregation, which we posited to be a major mechanism by which fluorescent porphyrins exerts their cytotoxic effect. Herein, we tested the hypothesis that PP-IX-mediated protein aggregation is modulated by different PP-IX nanostructures via a mechanism that depends on their oxidizing potential and protein-binding ability. UV-visible spectrophotometry showed pH-mediated reversible transformations of PP-IX nanostructures. Biochemical analysis showed that PP-IX nanostructure size modulated PP-IX-induced protein oxidation and protein aggregation. Furthermore, albumin, the most abundant serum protein, preferentially binds PP-IX dimers and enhances their oxidizing ability. PP-IX binding quenched albumin intrinsic fluorescence and oxidized His-91 residue to Asn/Asp, likely via a previously described photo-oxidation mechanism for other proteins. Extracellular albumin protected from intracellular porphyrinogenic stress and protein aggregation by acting as a PP-IX sponge. This work highlights the importance of PP-IX nanostructures in the context of porphyrias and offers insights into potential novel therapeutic approaches.
Subject(s)
Nanostructures/chemistry , Protein Aggregates , Protoporphyrins/chemistry , Aminolevulinic Acid/pharmacology , Animals , Binding Sites , Cattle , Cell Line , Deferoxamine/pharmacology , Dimerization , Humans , Hydrogen-Ion Concentration , Models, Biological , Oxidation-Reduction , Protein Binding , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, UltravioletABSTRACT
BACKGROUND & AIMS: Porphyrias result from anomalies of heme biosynthetic enzymes and can lead to cirrhosis and hepatocellular cancer. In mice, these diseases can be modeled by administration of a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which causes accumulation of porphyrin intermediates, resulting in hepatobiliary injury. Wnt/ß-catenin signaling has been shown to be a modulatable target in models of biliary injury; thus, we investigated its role in DDC-driven injury. METHODS: ß-Catenin (Ctnnb1) knockout (KO) mice, Wnt co-receptor KO mice, and littermate controls were fed a DDC diet for 2â¯weeks. ß-Catenin was exogenously inhibited in hepatocytes by administering ß-catenin dicer-substrate RNA (DsiRNA), conjugated to a lipid nanoparticle, to mice after DDC diet and then weekly for 4â¯weeks. In all experiments, serum and livers were collected; livers were analyzed by histology, western blotting, and real-time PCR. Porphyrin was measured by fluorescence, quantification of polarized light images, and liquid chromatography-mass spectrometry. RESULTS: DDC-fed mice lacking ß-catenin or Wnt signaling had decreased liver injury compared to controls. Exogenous mice that underwent ß-catenin suppression by DsiRNA during DDC feeding also showed less injury compared to control mice receiving lipid nanoparticles. Control livers contained extensive porphyrin deposits which were largely absent in mice lacking ß-catenin signaling. Notably, we identified a network of key heme biosynthesis enzymes that are suppressed in the absence of ß-catenin, preventing accumulation of toxic protoporphyrins. Additionally, mice lacking ß-catenin exhibited fewer protein aggregates, improved proteasomal activity, and reduced induction of autophagy, all contributing to protection from injury. CONCLUSIONS: ß-Catenin inhibition, through its pleiotropic effects on metabolism, cell stress, and autophagy, represents a novel therapeutic approach for patients with porphyria. LAY SUMMARY: Porphyrias are disorders resulting from abnormalities in the steps that lead to heme production, which cause build-up of toxic by-products called porphyrins. Liver is commonly either a source or a target of excess porphyrins, and complications can range from minor abnormalities to liver failure. In this report, we inhibited Wnt/ß-catenin signaling in an experimental model of porphyria, which resulted in decreased liver injury. Targeting ß-catenin affected multiple components of the heme biosynthesis pathway, thus preventing build-up of porphyrin intermediates. Our study suggests that drugs inhibiting ß-catenin activity could reduce the amount of porphyrin accumulation and help alleviate symptoms in patients with porphyria.
Subject(s)
Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Porphyrias/complications , Porphyrins/metabolism , beta Catenin/metabolism , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hepatocytes/pathology , Immunohistochemistry , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Male , Mice , Mice, KnockoutABSTRACT
Hypochlorous acid (HOCl) is a potent cytotoxic oxidant generated by the enzyme myeloperoxidase (MPO) in the presence of hydrogen peroxide (H2 O2 ) and chloride (Cl- ). Elevated levels of HOCl play an important role in various pathological conditions through oxidative modification of several biomolecules. Recently, we have highlighted the ability of HOCl to mediate the destruction of the metal-ion derivatives of tetrapyrrole macrocyclic rings such as hemoproteins and vitamin B12 (VB12 ) derivatives. Destruction of cyanocobalamin, a common pharmacological form of VB12 mediated by HOCl, results in the generation of toxic molecular products such as chlorinated derivatives, corrin ring cleavage products, the toxic blood agents cyanide (CN- ) and cyanogen chloride (CNCl), and redox-active free cobalt. Here, we show that melatonin prevents HOCl-mediated cyanocobalamin destruction, using a combination of UV-Vis spectrophotometry, high-performance liquid chromatography analysis, and colorimetric CNCl assay. Identification of several melatonin oxidation products suggests that the protective role of melatonin against HOCl-mediated cyanocobalamin destruction and subsequent CNCl generation is at the expense of melatonin oxidation. Collectively, this work highlights that, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also prevent VB12 deficiency in inflammatory conditions such as cardiovascular and neurodegenerative diseases, among many others.
Subject(s)
Antioxidants/chemistry , Cyanides/chemistry , Hypochlorous Acid/chemistry , Melatonin/chemistry , Vitamin B 12/chemistry , Animals , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Cyanides/metabolism , Humans , Hypochlorous Acid/metabolism , In Vitro Techniques , Kinetics , Melatonin/metabolism , Spectrophotometry , Vitamin B 12/metabolismABSTRACT
Protoporphyria is a metabolic disease that causes excess production of protoporphyrin IX (PP-IX), the final biosynthetic precursor to heme. Hepatic PP-IX accumulation may lead to end-stage liver disease. We tested the hypothesis that systemic administration of porphyrin precursors to zebrafish larvae results in protoporphyrin accumulation and a reproducible nongenetic porphyria model. Retro-orbital infusion of PP-IX or the iron chelator deferoxamine mesylate (DFO), with the first committed heme precursor α-aminolevulinic acid (ALA), generates high levels of PP-IX in zebrafish larvae. Exogenously infused or endogenously produced PP-IX accumulates preferentially in the liver of zebrafish larvae and peaks 1 to 3 d after infusion. Similar to patients with protoporphyria, PP-IX is excreted through the biliary system. Porphyrin accumulation in zebrafish liver causes multiorganelle protein aggregation as determined by mass spectrometry and immunoblotting. Endoplasmic reticulum stress and induction of autophagy were noted in zebrafish larvae and corroborated in 2 mouse models of protoporphyria. Furthermore, electron microscopy of zebrafish livers from larvae administered ALA + DFO showed hepatocyte autophagosomes, nuclear membrane ruffling, and porphyrin-containing vacuoles with endoplasmic reticulum distortion. In conclusion, systemic administration of the heme precursors PP-IX or ALA + DFO into zebrafish larvae provides a new model of acute protoporphyria with consequent hepatocyte protein aggregation and proteotoxic multiorganelle alterations and stress.-Elenbaas, J. S., Maitra, D., Liu, Y., Lentz, S. I., Nelson, B., Hoenerhoff, M. J., Shavit, J. A., Omary, M. B. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress.
Subject(s)
Disease Models, Animal , Protein Aggregation, Pathological/pathology , Protoporphyria, Erythropoietic/genetics , Protoporphyria, Erythropoietic/pathology , Stress, Physiological , Zebrafish , Aminolevulinic Acid/pharmacology , Animals , Deferoxamine/pharmacology , Genetic Predisposition to Disease , Larva/metabolism , Liver/metabolism , Liver/pathology , Mice , Photosensitizing Agents/pharmacology , Protoporphyrins/genetics , Protoporphyrins/metabolism , Siderophores/pharmacologyABSTRACT
Hepatic accumulation of protoporphyrin-IX (PP-IX) in erythropoietic protoporphyria (EPP) or X-linked-dominant protoporphyria (XLP) cause liver damage. Hepatocyte nuclear lamin aggregation is a sensitive marker for PP-IX-mediated liver injury. We tested the hypothesis that extracellular or intracellular protoporphyria cause damage to different subcellular compartments, in a light-triggered manner. Three hepatoma cell lines (HepG2, Hepa-1, and Huh-7) were treated with exogenous PP-IX (mimicking XLP extrahepatic protoporphyria) or with the iron chelator deferoxamine and the porphyrin precursor 5-aminolevulinic acid (ALA) (mimicking intracellular protoporphyrin accumulation in EPP). Exogenous PP-IX accumulated predominantly in the nuclear fraction and caused nuclear shape deformation and cytoplasmic vacuoles containing electron-dense particles, whereas ALA+deferoxamine treatment resulted in higher PP-IX in the cytoplasmic fraction. Protein aggregation in the nuclear and cytoplasmic fractions paralleled PP-IX levels and, in cell culture, the effects were exclusively ambient light-mediated. PP-IX and ALA caused proteasomal inhibition, whereas endoplasmic reticulum protein aggregation was more prominent in ALA-treated cells. The enhanced ALA-related toxicity is likely due to generation of additional porphyrin intermediates including uroporphyrin and coproporphyrin, based on HPLC analysis of cell lysates and the culture medium, as well as cell-free experiments with uroporphyrin/coproporphyrin. Mouse livers from drug-induced porphyria phenocopied the in vitro findings, and mass spectrometry of liver proteins isolated in light/dark conditions showed diminished (as compared with light-harvested) but detectable aggregation under dark-harvested conditions. Therefore, PP-IX leads to endoplasmic reticulum stress and proteasome inhibition in a manner that depends on the source of porphyrin buildup and light exposure. Porphyrin-mediated selective protein aggregation provides a potential mechanism for porphyria-associated tissue injury.
Subject(s)
Light , Porphyrins/metabolism , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Subcellular FractionsABSTRACT
Oxidative liver injury during steatohepatitis results in aggregation and transglutaminase-2 (TG2)-mediated crosslinking of the keratin cytoplasmic intermediate filament proteins (IFs) to form Mallory-Denk body (MDB) inclusions. The effect of liver injury on lamin nuclear IFs is unknown, though lamin mutations in several human diseases result in lamin disorganization and nuclear shape changes. We tested the hypothesis that lamins undergo aggregation during oxidative liver injury using two MDB mouse models: (i) mice fed the porphyrinogenic drug 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and (ii) mice that harbor a mutation in ferrochelatase (fch), which converts protoporphyrin IX to heme. Dramatic aggregation of lamin A/C and B1 was noted in the livers of both models in association with changes in lamin organization and nuclear shape, as determined by immunostaining and electron microscopy. The lamin aggregates sequester other nuclear proteins including transcription factors and ribosomal and nuclear pore components into high molecular weight complexes, as determined by mass-spectrometry and confirmed biochemically. Lamin aggregate formation is rapid and precedes keratin aggregation in fch livers, and is seen in liver explants of patients with alcoholic cirrhosis. Exposure of cultured cells to DDC, protoporphyrin IX or N-methyl-protoporphyrin, or incubation of purified lamins with protoporphyrin IX, also results in lamin aggregation. In contrast, lamin aggregation is ameliorated by TG2 inhibition. Therefore, lamin aggregation is an early sensor of porphyria-associated liver injury and might serve to buffer oxidative stress. The nuclear shape and lamin defects associated with porphyria phenocopy the changes seen in laminopathies and could result in transcriptional alterations due to sequestration of nuclear proteins.
Subject(s)
Fatty Liver/metabolism , Lamin Type A/metabolism , Lamin Type B/metabolism , Porphyrias, Hepatic/metabolism , Animals , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/genetics , Ferrochelatase/genetics , GTP-Binding Proteins/antagonists & inhibitors , Hep G2 Cells , Humans , Mallory Bodies/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation/genetics , Oxidative Stress , Porphyrias, Hepatic/complications , Porphyrias, Hepatic/genetics , Protein Glutamine gamma Glutamyltransferase 2 , Protein Multimerization/drug effects , Protein Transport/drug effects , Protoporphyrins/pharmacology , Pyridines/toxicity , Transglutaminases/antagonists & inhibitorsABSTRACT
Hypochlorous acid (HOCl) is generated by myeloperoxidase, using chloride and hydrogen peroxide as substrates. Here we demonstrate that HOCl alters metaphase-II mouse oocyte microtubules and chromosomal (CH) alignment which can be prevented by melatonin. Metaphase-II mouse oocytes, obtained commercially, were grouped as: control, melatonin (150, 200nmol/mL), HOCl (10, 20, 50, and 100nmol/mL), and HOCl (50nmol/mL) pretreated with 150 and 200 nmol/mL of melatonin. Microtubule and CH alignment was studied utilizing an indirect immunofluorescence technique and scored by two observers. Pearson chi-square test and Fisher's exact test were used to compare outcomes between controls and treated groups and also among each group. Poor scores for the spindle and chromosomes increased significantly at 50nmol/mL of HOCl (P<0.001). Oocytes treated with melatonin only at 150 and 200 nmol/mL showed no changes; significant differences (P<0.001) were observed when oocytes exposed to 50nmol/mL of HOCl were compared to oocytes pretreated with 200 nmol/mL melatonin. Fifty percent of the oocytes demonstrated good scores, both in microtubule and CH alterations, when pretreated with melatonin at 150 nmol/mL compared to 0% in the HOCl-only group. HOCl alters the metaphase-II mouse oocyte spindle and CH alignment in a dose-dependant manner, which might be a potential cause of poor oocyte quality (e.g., in patients with endometriosis). Melatonin prevented the HOCl-mediated spindle and CH damage, and therefore, may be an attractive therapeutic option to prevent oocyte damage in endometriosis or inflammatory diseases where HOCl levels are known to be elevated.
Subject(s)
Chromosomes/drug effects , Hypochlorous Acid/pharmacology , Melatonin/pharmacology , Metaphase/genetics , Microtubules/drug effects , Oocytes/metabolism , Animals , Chromosomes/metabolism , Female , Metaphase/drug effects , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Microtubules/metabolism , Oocytes/cytology , Oocytes/drug effectsABSTRACT
In inflammatory diseases, where hypochlorous acid (HOCl) is elevated, iron homeostasis is disturbed, resulting in accumulation of free iron. Free iron is toxic by virtue of its ability to generate free radicals through the Fenton reaction. HOCl is generated by myeloperoxidase, (MPO) using chloride and hydrogen peroxide as substrates. Recent studies demonstrate that HOCl binds to the heme moiety of hemoglobin (Hb), which generates a transient ferric species whose formation and decay kinetics indicate it participates in protein aggregation, heme destruction, and free iron release. Here, we show that melatonin prevents HOCl-mediated Hb heme destruction and protein aggregation, using a combination of UV-vis spectrophotometry, ferrozine colorimetric assay, and in-gel heme staining. We also show that melatonin treatment prevents HOCl-mediated loss of red blood cell (RBC) viability, indicating biologic relevance of this finding. The mechanism by which melatonin prevents HOCl-mediated Hb heme destruction is by direct scavenging of HOCl and/or through the destabilization of the higher Hb oxidative states intermediates, ferryl porphyrin radical cation Hb-Fe(IV)=O(+ホ) and Hb-Fe(IV)=O, which are formed through the reaction of HOCl with Hb. Our work establishes a direct mechanistic link between melatonin and its protective effect in chronic inflammatory diseases. Collectively, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also exert its protective effect by inhibiting HOCl-mediated heme destruction of hemoproteins and subsequent free iron release.
Subject(s)
Heme/metabolism , Hemoglobins/drug effects , Hemoglobins/metabolism , Hypochlorous Acid/pharmacology , Iron/metabolism , Melatonin/pharmacology , Electrophoresis, Polyacrylamide Gel , Oxidative Stress/drug effects , Peroxidase/metabolism , SpectrophotometryABSTRACT
Congenital erythropoietic porphyria (CEP) is a rare genetic disorder leading to accumulation of uro/coproporphyrin-I in tissues due to inhibition of uroporphyrinogen-III synthase. Clinical manifestations of CEP include bone fragility, severe photosensitivity and photomutilation. Currently there is no specific treatment for CEP, except bone marrow transplantation, and there is an unmet need for treating this orphan disease. Fluorescent porphyrins cause protein aggregation, which led us to hypothesize that uroporphyrin-I accumulation leads to protein aggregation and CEP-related bone phenotype. We developed a zebrafish model that phenocopies features of CEP. As in human patients, uroporphyrin-I accumulated in the bones of zebrafish, leading to impaired bone development. Furthermore, in an osteoblast-like cell line, uroporphyrin-I decreased mineralization, aggregated bone matrix proteins, activated endoplasmic reticulum stress and disrupted autophagy. Using high-throughput drug screening, we identified acitretin, a second-generation retinoid, and showed that it reduced uroporphyrin-I accumulation and its deleterious effects on bones. Our findings provide a new CEP experimental model and a potential repurposed therapeutic.
Subject(s)
Acitretin/therapeutic use , Bone Development/drug effects , Bone and Bones/drug effects , Porphyria, Erythropoietic/drug therapy , Uroporphyrins/metabolism , Acitretin/pharmacology , Animals , Bone and Bones/metabolism , Cell Line , Disease Models, Animal , Porphyria, Erythropoietic/genetics , Porphyria, Erythropoietic/metabolism , Uroporphyrins/genetics , ZebrafishABSTRACT
Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteasome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrias that involve fluorescent porphyrin accumulation.
Subject(s)
Porphyrias/genetics , Porphyrias/metabolism , Porphyrias/physiopathology , Animals , Carcinoma, Hepatocellular/metabolism , Dermatitis, Phototoxic/metabolism , Dermatitis, Phototoxic/physiopathology , Heme/metabolism , Humans , Liver/metabolism , Liver Neoplasms/metabolism , Mice , Oxidation-Reduction , Oxidative Stress/physiology , Photosensitivity Disorders , Porphyrins/metabolism , Protein Aggregates , Protoporphyrins , Uroporphyrins , ZebrafishABSTRACT
BACKGROUND & AIMS: Porphyrias are caused by porphyrin accumulation resulting from defects in the heme biosynthetic pathway that typically lead to photosensitivity and possible end-stage liver disease with an increased risk of hepatocellular carcinoma. Our aims were to study the mechanism of porphyrin-induced cell damage and protein aggregation, including liver injury, where light exposure is absent. METHODS: Porphyria was induced in vivo in mice using 3,5-diethoxycarbonyl-1,4-dihydrocollidine or in vitro by exposing human liver Huh7 cells and keratinocytes, or their lysates, to protoporphyrin-IX, other porphyrins, or to δ-aminolevulinic acid plus deferoxamine. The livers, cultured cells, or porphyrin exposed purified proteins were analyzed for protein aggregation and oxidation using immunoblotting, mass spectrometry, and electron paramagnetic resonance spectroscopy. Consequences on cell-cycle progression were assessed. RESULTS: Porphyrin-mediated protein aggregation required porphyrin-photosensitized singlet oxygen and porphyrin carboxylate side-chain deprotonation, and occurred with site-selective native protein methionine oxidation. Noncovalent interaction of protoporphyrin-IX with oxidized proteins led to protein aggregation that was reversed by incubation with acidified n-butanol or high-salt buffer. Phototoxicity and the ensuing proteotoxicity, mimicking porphyria photosensitivity conditions, were validated in cultured keratinocytes. Protoporphyrin-IX inhibited proteasome function by aggregating several proteasomal subunits, and caused cell growth arrest and aggregation of key cell proliferation proteins. Light-independent synergy of protein aggregation was observed when porphyrin was applied together with glucose oxidase as a secondary peroxide source. CONCLUSIONS: Photo-excitable porphyrins with deprotonated carboxylates mediate protein aggregation. Porphyrin-mediated proteotoxicity in the absence of light, as in the liver, requires porphyrin accumulation coupled with a second tissue oxidative injury. These findings provide a potential mechanism for internal organ damage and photosensitivity in porphyrias.
Subject(s)
Oxygen/metabolism , Porphyrias/metabolism , Aminolevulinic Acid , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line , Deferoxamine , Heme/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Photosensitivity Disorders , Photosensitizing Agents , Porphyrias/physiopathology , Porphyrins/metabolism , Protein Aggregates , Protein Conformation , ProtoporphyrinsABSTRACT
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure.
Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Ethanol/toxicity , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Liver/drug effects , Oxepins/pharmacology , Protein Transport/drug effects , Analgesics, Non-Narcotic/toxicity , Animals , Cell Nucleus/metabolism , Central Nervous System Depressants/toxicity , Drug Synergism , Female , Liver/metabolism , Mice , Mice, Inbred C57BLABSTRACT
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
Subject(s)
Heme/metabolism , Hypochlorous Acid/metabolism , Iron/metabolism , Melatonin/metabolism , Peroxidase/metabolism , Catalysis , Enzyme Activation , Humans , Hydrogen Peroxide/metabolism , Leukocytes/metabolism , Oxidation-ReductionABSTRACT
Yes-associated protein 1 (YAP1) is a transcriptional coactivator in the Hippo signaling pathway. Increased YAP1 activity promotes the growth of tumors, including that of colorectal cancer (CRC). Verteporfin, a drug that enhances phototherapy to treat neovascular macular degeneration, is an inhibitor of YAP1. We found that verteporfin inhibited tumor growth independently of its effects on YAP1 or the related protein TAZ in genetically or chemically induced mouse models of CRC, in patient-derived xenografts, and in enteroid models of CRC. Instead, verteporfin exhibited in vivo selectivity for killing tumor cells in part by impairing the global clearance of high-molecular weight oligomerized proteins, particularly p62 (a sequestrome involved in autophagy) and STAT3 (signal transducer and activator of transcription 3; a transcription factor). Verteporfin inhibited cytokine-induced STAT3 activity and cell proliferation and reduced the viability of cultured CRC cells. Although verteporfin accumulated to a greater extent in normal cells than in tumor cells in vivo, experiments with cultured cells indicated that the normal cells efficiently cleared verteporfin-induced protein oligomers through autophagic and proteasomal pathways. Culturing CRC cells under hypoxic or nutrient-deprived conditions (modeling a typical CRC microenvironment) impaired the clearance of protein oligomers and resulted in cell death, whereas culturing cells under normoxic or glucose-replete conditions protected cell viability and proliferation in the presence of verteporfin. Furthermore, verteporfin suppressed the proliferation of other cancer cell lines even in the absence of YAP1, suggesting that verteporfin may be effective against multiple types of solid cancers.
Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adenocarcinoma/drug therapy , Adenoma/drug therapy , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Neoplasm Proteins/drug effects , Phosphoproteins/antagonists & inhibitors , Porphyrins/pharmacology , Acyltransferases , Adaptor Proteins, Signal Transducing/physiology , Adenocarcinoma/pathology , Adenoma/pathology , Adenomatous Polyposis Coli/drug therapy , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Division/drug effects , Cell Line, Tumor , Colonic Neoplasms/chemically induced , Colonic Neoplasms/pathology , Genes, APC , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Weight , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Phosphoproteins/physiology , Phosphorylation , Proteasome Endopeptidase Complex/drug effects , Protein Multimerization/drug effects , Protein Processing, Post-Translational , STAT3 Transcription Factor/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Transcription, Genetic/drug effects , Verteporfin , Xenograft Model Antitumor Assays , YAP-Signaling ProteinsABSTRACT
Hypochlorous acid (HOCl) is a potent oxidant generated by myeloperoxidase (MPO), which is an abundant enzyme used for defense against microbes. We examined the potential role of HOCl in corrin ring destruction and subsequent formation of cyanogen chloride (CNCl) from dicyanocobinamide ((CN)2-Cbi). Stopped-flow analysis revealed that the reaction consists of at least three observable steps, including at least two sequential transient intermediates prior to corrin ring destruction. The first two steps were attributed to sequential replacement of the two cyanide ligands with hypochlorite, while the third step was the destruction of the corrin ring. The formation of (OCl)(CN)-Cbi and its conversion to (OCl)2-Cbi was fitted to a first order rate equation with second order rate constants of 0.002 and 0.0002 µM(-1) s(-1), respectively. The significantly lower rate of the second step compared to the first suggests that the replacement of the first cyanide molecule by hypochlorite causes an alteration in the ligand trans effects changing the affinity and/or accessibility of Co toward hypochlorite. Plots of the apparent rate constants as a function of HOCl concentration for all the three steps were linear with Y-intercepts close to zero, indicating that HOCl binds in an irreversible one-step mechanism. Collectively, these results illustrate functional differences in the corrin ring environments toward binding of diatomic ligands.
Subject(s)
Hypochlorous Acid/chemistry , Nitriles/chemistry , Organometallic Compounds/chemistry , Cyanides/chemistry , Hydrogen-Ion Concentration , KineticsABSTRACT
Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-ß or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation.
Subject(s)
Heme/chemistry , Hypochlorous Acid/chemistry , Peptides/chemistry , Peroxidases/chemistry , Biocatalysis , Chromatography, Liquid , Humans , Oxidative Stress , Spectrometry, Mass, Electrospray IonizationABSTRACT
Here we show that hydroxyl radical ((â¢)OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7-10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ(2) test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70-80% demonstrated poor scores in both MT and CH when pretreated with 5 µM H2O2, and this increased up to 90-100% when treated with 10-20 µM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the (â¢)OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.
Subject(s)
Cytoskeleton/metabolism , Oocytes/drug effects , Oocytes/growth & development , Spindle Apparatus/metabolism , Animals , Cytoskeleton/drug effects , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Metaphase/drug effects , Mice , Microtubules/drug effects , Microtubules/metabolism , Oocytes/metabolism , Spindle Apparatus/drug effectsABSTRACT
OBJECTIVE: To demonstrate the effects of peroxynitrite (ONOO(-)) on metaphase II mouse oocyte spindle structure and chromosomal alignment in presence and absence of cumulus cells. DESIGN: Experimental study. SETTING: University-based research laboratory. ANIMAL(S): Metaphase II mouse oocytes (n = 440). INTERVENTION(S): Metaphase II mouse oocytes, with and without cumulus cells, were exposed to ONOO(-), nitrite/nitrate, the final product of ONOO(-), and nontreated controls for 15 minutes. Oocytes were fixed and subjected to indirect immunofluorescence for detecting changes in the spindle and chromosomal alignment. Viability staining in exposed oocytes with and without cumulus cells was performed using the trypan blue dye exclusion method and compared with controls. MAIN OUTCOME MEASURE(S): Scoring the alterations in spindle and chromosomal alignment using immunofluorescent and confocal microscopy based on a previously validated system. RESULT(S): Most oocytes had poor scores for the spindle and chromosomal alignment with exposure to ONOO(-) in a dose-dependent manner compared with controls. Trypan blue staining revealed that most of the cumulus cells failed to survive treatment with ONOO(-) compared with controls. CONCLUSION(S): ONOO(-) affects the viability of cumulus cells and the oocyte spindle structure in a dose-dependent manner. Collectively, these effects compromise oocyte quality, which may lead to female infertility.