Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mol Cell ; 82(15): 2754-2768.e5, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35835111

ABSTRACT

Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , Endonucleases/genetics , Gene Editing , Humans , RNA
2.
Mol Cell ; 80(1): 140-155.e6, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007254

ABSTRACT

The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.


Subject(s)
3' Untranslated Regions/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , ELAV Proteins/metabolism , Neurons/metabolism , Alternative Splicing/genetics , Amino Acid Motifs , Animals , Cell Line , Cell Nucleus/metabolism , ELAV Proteins/chemistry , Larva/metabolism , Mutation/genetics , Poly A/metabolism , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
PLoS Genet ; 17(4): e1009439, 2021 04.
Article in English | MEDLINE | ID: mdl-33826609

ABSTRACT

ELAV/Hu factors are conserved RNA binding proteins (RBPs) that play diverse roles in mRNA processing and regulation. The founding member, Drosophila Elav, was recognized as a vital neural factor 35 years ago. Nevertheless, little was known about its impacts on the transcriptome, and potential functional overlap with its paralogs. Building on our recent findings that neural-specific lengthened 3' UTR isoforms are co-determined by ELAV/Hu factors, we address their impacts on splicing. While only a few splicing targets of Drosophila are known, ectopic expression of each of the three family members (Elav, Fne and Rbp9) alters hundreds of cassette exon and alternative last exon (ALE) splicing choices. Reciprocally, double mutants of elav/fne, but not elav alone, exhibit opposite effects on both classes of regulated mRNA processing events in larval CNS. While manipulation of Drosophila ELAV/Hu RBPs induces both exon skipping and inclusion, characteristic ELAV/Hu motifs are enriched only within introns flanking exons that are suppressed by ELAV/Hu factors. Moreover, the roles of ELAV/Hu factors in global promotion of distal ALE splicing are mechanistically linked to terminal 3' UTR extensions in neurons, since both processes involve bypass of proximal polyadenylation signals linked to ELAV/Hu motifs downstream of cleavage sites. We corroborate the direct action of Elav in diverse modes of mRNA processing using RRM-dependent Elav-CLIP data from S2 cells. Finally, we provide evidence for conservation in mammalian neurons, which undergo broad programs of distal ALE and APA lengthening, linked to ELAV/Hu motifs downstream of regulated polyadenylation sites. Overall, ELAV/Hu RBPs orchestrate multiple broad programs of neuronal mRNA processing and isoform diversification in Drosophila and mammalian neurons.


Subject(s)
Alternative Splicing/genetics , Cell Differentiation/genetics , Drosophila Proteins/genetics , ELAV Proteins/genetics , ELAV-Like Protein 1/genetics , Neurons/metabolism , 3' Untranslated Regions/genetics , Animals , Central Nervous System/growth & development , Central Nervous System/metabolism , Humans , Larva/genetics , Larva/growth & development , Nerve Tissue Proteins/genetics , Polyadenylation/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcriptome/genetics
4.
Am J Hematol ; 95(3): 238-244, 2020 03.
Article in English | MEDLINE | ID: mdl-31804739

ABSTRACT

The genetic and molecular abnormalities underlying histological transformation (HT) of nodal marginal zone lymphoma (NMZL) to diffuse large B-cell lymphoma (DLBCL) are not well known. While del(20q12) is commonly deleted in myelodysplastic syndrome it has not previously been associated with DLBCL. We recently described a case of DLBCL harboring del(20q12) in a patient with a history of MZL involving lymph nodes and skin. Here we report eight matched cases of transformed MZL(tMZL): six from nodal MZL (tNMZL) and two from splenic MZL (tSMZL). We found >20% del(20q12) in 4/6 tNMZL, but not in tSMZL, nor in unmatched DLBCL, MZL with increased large cells (MZL-ILC), or MZL cases. To examine whether transformation is associated with a specific gene signature, the matched cases were analyzed for multiplexed gene expression using the Nanostring PanCancer Pathways panel. The differential gene expression signature revealed enrichment of inflammatory markers, as previously observed in MZL. Also, tMZL and de novo DLBCL were enriched for extracellular matrix proteins such as collagen and fibronectin, vascular development protein PDGFRß, DNA repair protein RAD51, and oncogenic secrete protein Wnt11. A subset of genes is expressed differentially in del(20q12) tMZL cases vs non-del(20q12) tMZL cases. These results suggest a specific pathway is involved in the histological transformation of NMZL, which could serve as an indicator of aggressive clinical course in this otherwise indolent neoplasm.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell, Marginal Zone , Lymphoma, Large B-Cell, Diffuse , Neoplasm Proteins , Skin Neoplasms , Aged , Aged, 80 and over , Female , Humans , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/metabolism , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
5.
Mol Cell ; 45(3): 292-302, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22227116

ABSTRACT

Small RNAs target invaders for silencing in the CRISPR-Cas pathways that protect bacteria and archaea from viruses and plasmids. The CRISPR RNAs (crRNAs) contain sequence elements acquired from invaders that guide CRISPR-associated (Cas) proteins back to the complementary invading DNA or RNA. Here, we have analyzed essential features of the crRNAs associated with the Cas RAMP module (Cmr) effector complex, which cleaves targeted RNAs. We show that Cmr crRNAs contain an 8 nucleotide 5' sequence tag (also found on crRNAs associated with other CRISPR-Cas pathways) that is critical for crRNA function and can be used to engineer crRNAs that direct cleavage of novel targets. We also present data that indicate that the Cmr complex cleaves an endogenous complementary RNA in Pyrococcus furiosus, providing direct in vivo evidence of RNA targeting by the CRISPR-Cas system. Our findings indicate that the CRISPR RNA-Cmr protein pathway may be exploited to cleave RNAs of interest.


Subject(s)
Inverted Repeat Sequences , Pyrococcus furiosus/genetics , RNA Cleavage , RNA, Archaeal/isolation & purification , Archaeal Proteins/isolation & purification , Base Sequence , Genetic Engineering , Genetic Loci , Immunoprecipitation , Macromolecular Substances/isolation & purification , Molecular Sequence Data , Pyrococcus furiosus/metabolism , RNA, Antisense , Sequence Analysis, RNA
6.
Extremophiles ; 23(1): 19-33, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30284045

ABSTRACT

Diverse CRISPR-Cas immune systems protect archaea and bacteria from viruses and other mobile genetic elements. All CRISPR-Cas systems ultimately function by sequence-specific destruction of invading complementary nucleic acids. However, each CRISPR system uses compositionally distinct crRNP [CRISPR (cr) RNA/Cas protein] immune effector complexes to recognize and destroy invasive nucleic acids by unique molecular mechanisms. Previously, we found that Type I-A (Csa) effector crRNPs from Pyrococcus furiosus function in vivo to eliminate invader DNA. Here, we reconstituted functional Type I-A effector crRNPs in vitro with recombinant Csa proteins and synthetic crRNA and characterized properties of crRNP assembly, target DNA recognition and cleavage. Six proteins (Csa 4-1, Cas3″, Cas3', Cas5a, Csa2, Csa5) are essential for selective target DNA binding and cleavage. Native gel shift analysis and UV-induced RNA-protein crosslinking demonstrate that Cas5a and Csa2 directly interact with crRNA 5' tag and guide sequences, respectively. Mutational analysis revealed that Cas3″ is the effector nuclease of the complex. Together, our results indicate that DNA cleavage by Type I-A crRNPs requires crRNA-guided and protospacer adjacent motif-dependent target DNA binding to unwind double-stranded DNA and expose single strands for progressive ATP-dependent 3'-5' cleavage catalyzed by integral Cas3' helicase and Cas3″ nuclease crRNP components.


Subject(s)
CRISPR-Cas Systems , Pyrococcus furiosus/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Pyrococcus furiosus/enzymology
7.
J Biol Chem ; 291(15): 8070-89, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26663085

ABSTRACT

Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.


Subject(s)
Collagen/metabolism , Gelatinases/metabolism , Lung/pathology , Membrane Proteins/metabolism , Pulmonary Fibrosis/pathology , Serine Endopeptidases/metabolism , Animals , Cells, Cultured , Endopeptidases , Fibroblasts/metabolism , Fibroblasts/pathology , Gelatinases/genetics , Gene Deletion , Humans , Lung/metabolism , Male , Matrix Metalloproteinases/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Proteolysis , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA, Messenger/genetics , Serine Endopeptidases/genetics , Up-Regulation
8.
RNA ; 21(6): 1147-58, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25904135

ABSTRACT

CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5' ends (8-nt repeat-derived 5' tag sequences) but heterogeneous 3' ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3' end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.


Subject(s)
CRISPR-Cas Systems , Pyrococcus furiosus/genetics , Pyrococcus furiosus/metabolism , RNA, Archaeal/genetics , Ribonucleoproteins/isolation & purification , Archaeal Proteins/isolation & purification , Archaeal Proteins/metabolism , CRISPR-Associated Proteins/isolation & purification , CRISPR-Associated Proteins/metabolism , Mass Spectrometry , Molecular Sequence Data , RNA, Archaeal/metabolism , Ribonucleoproteins/metabolism , Sequence Analysis, RNA
9.
Extremophiles ; 21(1): 95-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27582008

ABSTRACT

CRISPR-Cas immune systems defend prokaryotes against viruses and plasmids. CRISPR RNAs (crRNAs) associate with various CRISPR-associated (Cas) protein modules to form structurally and functionally diverse (Type I-VI) crRNP immune effector complexes. Previously, we identified three, co-existing effector complexes in Pyrococcus furiosus -Type I-A (Csa), Type I-G (Cst), and Type III-B (Cmr)-and demonstrated that each complex functions in vivo to eliminate invader DNA. Here, we reconstitute functional Cst crRNP complexes in vitro from recombinant Cas proteins and synthetic crRNAs and investigate mechanisms of crRNP assembly and invader DNA recognition and destruction. All four known Cst-affiliated Cas proteins (Cas5t, Cst1, Cst2, and Cas3) are required for activity, but each subunit plays a distinct role. Cas5t and Cst2 comprise a minimal set of proteins that selectively interact with crRNA. Further addition of Cst1, enables the four subunit crRNP (Cas5t, Cst1, Cst2, crRNA) to specifically bind complementary, double-stranded DNA targets and to recruit the Cas3 effector nuclease, which catalyzes cleavages at specific sites within the displaced, non-target DNA strand. Our results indicate that Type I-G crRNPs selectively bind target DNA in a crRNA and, protospacer adjacent motif dependent manner to recruit a dedicated Cas3 nuclease for invader DNA destruction.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Pyrococcus/metabolism , CRISPR-Associated Proteins/genetics , Protein Binding , Pyrococcus/genetics
10.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746170

ABSTRACT

Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-ß antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-ß, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-ß1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-ß signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-ß suggests potential for diverse research and clinical applications.

11.
Article in English | MEDLINE | ID: mdl-38817124

ABSTRACT

CONTEXT: Pancreatic neuroendocrine tumors (PNETs) exhibit a wide range of behavior from localized disease to aggressive metastasis. A comprehensive transcriptomic profile capable of differentiating between these phenotypes remains elusive. OBJECTIVE: Use machine learning to develop predictive models of PNET metastatic potential dependent upon transcriptomic signature. METHODS: RNA-sequencing data were analyzed from 95 surgically-resected primary PNETs in an international cohort. Two cohorts were generated with equally balanced metastatic PNET composition. Machine learning was used to create predictive models distinguishing between localized and metastatic tumors. Models were validated on an independent cohort of 29 formalin-fixed, paraffin-embedded samples using NanoString nCounter®, a clinically-available mRNA quantification platform. RESULTS: Gene expression analysis identified concordant differentially expressed genes between the two cohorts. Gene set enrichment analysis identified additional genes that contributed to enriched biologic pathways in metastatic PNETs. Expression values for these genes were combined with an additional 7 genes known to contribute to PNET oncogenesis and prognosis, including ARX and PDX1. Eight specific genes (AURKA, CDCA8, CPB2, MYT1L, NDC80, PAPPA2, SFMBT1, ZPLD1) were identified as sufficient to classify the metastatic status with high sensitivity (87.5% - 93.8%) and specificity (78.1% - 96.9%). These models remained predictive of the metastatic phenotype using NanoString nCounter® on the independent validation cohort, achieving a median AUROC of 0.886. CONCLUSIONS: We identified and validated an eight-gene panel predictive of the metastatic phenotype in PNETs, which can be detected using the clinically-available NanoString nCounter® system. This panel should be studied prospectively to determine its utility in guiding operative versus non-operative management.

12.
Front Immunol ; 14: 1072810, 2023.
Article in English | MEDLINE | ID: mdl-36911698

ABSTRACT

Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress in vivo melanoma proliferation and induced significant systemic cytokine activation. A novel second-generation ACC TA99-HL2-KOA1, with retained IL-2Rß/γ binding and attenuated but preserved IL-2Rα binding, induced lower systemic cytokine activation with non-inferior protection in murine tumor studies. Transcriptomic analyses demonstrated an upregulation of Type I interferon responsive genes, particularly ISG15, in dendritic cells, macrophages and monocytes following TA99-HL2-KOA1 treatment. Characterization of additional ACCs in combination with cancer vaccines will likely be an important area of research for treating melanoma and other types of cancer.


Subject(s)
Melanoma , Nanoparticles , Vaccines, DNA , Mice , Animals , Cytokines , Antibodies , DNA
13.
Nat Commun ; 13(1): 695, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121758

ABSTRACT

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccines, DNA/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/ultrastructure , Antigens, Viral/immunology , Cell Line, Tumor , Cryoelectron Microscopy , Enzyme-Linked Immunospot Assay , Epitopes/immunology , HEK293 Cells , HIV Antibodies/ultrastructure , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred BALB C , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Vaccination/methods , Vaccines, DNA/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry
14.
Nat Commun ; 12(1): 346, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436641

ABSTRACT

Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy.


Subject(s)
Drug Resistance, Neoplasm , Lymphocytes, Tumor-Infiltrating/immunology , Mast Cells/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Drug Resistance, Neoplasm/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Mast Cells/drug effects , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Mice, Transgenic , Programmed Cell Death 1 Receptor/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Nat Commun ; 10(1): 3682, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417090

ABSTRACT

Somatic mutations in the RNase IIIb domain of DICER1 arise in cancer and disrupt the cleavage of 5' pre-miRNA arms. Here, we characterize an unstudied, recurrent, mutation (S1344L) in the DICER1 RNase IIIa domain in tumors from The Cancer Genome Atlas (TCGA) project and MSK-IMPACT profiling. RNase IIIa/b hotspots are absent from most cancers, but are notably enriched in uterine cancers. Systematic analysis of TCGA small RNA datasets show that DICER1 RNase IIIa-S1344L tumors deplete 5p-miRNAs, analogous to RNase IIIb hotspot samples. Structural and evolutionary coupling analyses reveal constrained proximity of RNase IIIa-S1344 to the RNase IIIb catalytic site, rationalizing why mutation of this site phenocopies known hotspot alterations. Finally, examination of DICER1 hotspot endometrial tumors reveals derepression of specific miRNA target signatures. In summary, comprehensive analyses of DICER1 somatic mutations and small RNA data reveal a mechanistic aspect of pre-miRNA processing that manifests in specific cancer settings.


Subject(s)
DEAD-box RNA Helicases/genetics , Endometrial Neoplasms/genetics , MicroRNAs/biosynthesis , Ribonuclease III/genetics , Databases, Genetic , Female , Humans , MicroRNAs/genetics , Mutation
16.
Nat Commun ; 10(1): 5688, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831736

ABSTRACT

Senescence is induced by various stimuli such as oncogene expression and telomere shortening, referred to as oncogene-induced senescence (OIS) and replicative senescence (RS), respectively, and accompanied by global transcriptional alterations and 3D genome reorganization. Here, we demonstrate that the human condensin II complex participates in senescence via gene regulation and reorganization of euchromatic A and heterochromatic B compartments. Both OIS and RS are accompanied by A-to-B and B-to-A compartmental transitions, the latter of which occur more frequently and are undergone by 14% (430 Mb) of the human genome. Mechanistically, condensin is enriched in A compartments and implicated in B-to-A transitions. The full activation of senescence genes (SASP genes and p53 targets) requires condensin; its depletion impairs senescence markers. This study describes that condensin reinforces euchromatic A compartments and promotes B-to-A transitions, both of which are coupled to optimal expression of senescence genes, thereby allowing condensin to contribute to senescent processes.


Subject(s)
Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Cellular Senescence/genetics , Cellular Senescence/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Multiprotein Complexes/metabolism , Multiprotein Complexes/pharmacology , Cell Cycle Proteins/genetics , Cell Line , Chromatin , Gene Expression Profiling , Gene Knockdown Techniques , Genomics , Humans , Nuclear Proteins/genetics , Oncogenes , Promoter Regions, Genetic , Telomere Shortening , Tumor Suppressor Protein p53/genetics
17.
Stem Cell Reports ; 11(3): 616-625, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30146489

ABSTRACT

MicroRNAs (miRNAs) are the effectors of a conserved gene-silencing system with broad roles in post-transcriptional regulation. Due to functional overlaps, assigning specific functions to individual miRNAs has been challenging. DICER1 cleaves pre-miRNA hairpins into mature miRNAs, and previously Dicer1 knockout mouse embryonic stem cells have been generated to study miRNA function in early mouse development. Here we report an essential requirement of DICER1 for the self-renewal of human embryonic stem cells (hESCs). Utilizing a conditional knockout approach, we found that DICER1 deletion led to increased death receptor-mediated apoptosis and failure of hESC self-renewal. We further devised a targeted miRNA screening strategy and uncovered essential pro-survival roles of members of the mir-302-367 and mir-371-373 clusters that bear the seed sequence AAGUGC. This platform is uniquely suitable for dissecting the roles of individual miRNAs in hESC self-renewal and differentiation, which may help us better understand the early development of human embryos.


Subject(s)
Apoptosis , Cell Self Renewal , DEAD-box RNA Helicases/metabolism , Human Embryonic Stem Cells/cytology , Ribonuclease III/metabolism , Base Sequence , Cell Line , DEAD-box RNA Helicases/genetics , Gene Deletion , Gene Expression Regulation , Gene Knockout Techniques , Human Embryonic Stem Cells/metabolism , Humans , MicroRNAs/genetics , Ribonuclease III/genetics
18.
Nanoscale ; 3(2): 635-41, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21088776

ABSTRACT

The present study demonstrates an eco-friendly and low cost protocol for synthesis of silver nanoparticles using the cell-free filtrate of Aspergillus flavus NJP08 when supplied with aqueous silver (Ag+) ions. Identification of the fungal isolate was based on nuclear ribosomal DNA internal transcribed spacer (ITS) identities. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) revealed the formation of spherical metallic silver nanoparticles. The average particle size calculated using Dynamic Light Scattering measurements (DLS) was found to be 17±5.9 nm. UV-Visible and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of extracellular proteins. SDS-PAGE profiles of the extracellular proteins showed the presence of two intense bands of 32 and 35 kDa, responsible for the synthesis and stability of silver nanoparticles, respectively. A probable mechanism behind the biosynthesis is discussed, which leads to the possibility of using the present protocol in future "nano-factories".


Subject(s)
Aspergillus flavus/metabolism , Metal Nanoparticles/chemistry , Silver/chemistry , Fungal Proteins/metabolism , Fungal Proteins/physiology , Metal Nanoparticles/ultrastructure , Silver Nitrate/chemistry , Spectroscopy, Fourier Transform Infrared
19.
J Cell Sci ; 121(Pt 9): 1393-402, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18397995

ABSTRACT

CD44 contributes to inflammation and fibrosis in response to injury. As fibroblast recruitment is critical to wound healing, we compared cytoskeletal architecture and migration of wild-type (CD44WT) and CD44-deficient (CD44KO) fibroblasts. CD44KO fibroblasts exhibited fewer stress fibers and focal adhesion complexes, and their migration was characterized by increased velocity but loss of directionality, compared with CD44WT fibroblasts. Mechanistically, we demonstrate that CD44WT cells generated more active TGFbeta than CD44KO cells and that CD44 promotes the activation of TGFbeta via an MMP-dependent mechanism. Reconstitution of CD44 expression completely rescued the phenotype of CD44KO cells whereas exposure of CD44KO cells to exogenous active TGFbeta rescued the defect in stress fibers and migrational velocity, but was not sufficient to restore directionality of migration. These results resolve the TGFbeta-mediated and TGFbeta-independent effects of CD44 on fibroblast migration and suggest that CD44 may be critical for the recruitment of fibroblasts to sites of injury and the function of fibroblasts in tissue remodeling and fibrosis.


Subject(s)
Cell Movement , Fibroblasts/cytology , Fibroblasts/metabolism , Hyaluronan Receptors/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antibodies/pharmacology , Cell Movement/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Stress Fibers/drug effects , Stress Fibers/metabolism
20.
J Indian Med Assoc ; 106(2): 86, 88, 90 passim, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18705250

ABSTRACT

Anginal symptoms are less predictive of abnormal coronary anatomy in women. The diagnostic accuracy of exercise treadmill test for obstructive coronary artery disease is less in young and middle aged women. High sensitive C-reactive protein has shown a strong and consistent relationship to the risk of incident cardiovascular events. Carotid intima media thickness is a non-invasive marker of atherosclerosis burden and also predicts prognosis in patients with coronary artery disease. We investigated whether incorporation of high sensitive C-reactive protein and carotid intima media thickness along with exercise stress results improved the predictive accuracy in perimenopausal non-diabetic women subset. Fifty perimenopausal non-diabetic patients (age 45 +/- 7 years) presenting with typical angina were subjected to treadmill test (Bruce protocol). Also carotid artery images at both sides of neck were acquired by B-mode ultrasound and carotid intima media thickness were measured. High sensitive C-reactive protein was measured. Of 50 patients, 22 had a positive exercise stress result. Coronary angiography done in all 50 patients revealed coronary artery disease in 10 patients with positive exercise stress result and in 4 patients with negative exercise stress result. Treadmill exercise stress test had a sensitivity of 71.4%, specificity of 66.7% and a negative predictive accuracy of 85.7% in this study group. High sensitive C-reactive protein in patients with documented coronary artery disease was not significantly different from those without coronary artery disease (4.8 +/- 0.9 mg/l versus 3.9 +/- 1.7 mg/l, p=NS). Also carotid intima media thickness was not significantly different between either of the groups with coronary artery disease positivity and negativity respectively (left: 1.25 +/- 0.55 versus 1.20 +/- 0.51 mm, p=NS; right:1.18 +/- 0.54 versus 1.15 +/- 0.41 mm, p=NS). High sensitive C-reactive protein and carotid intima media thickness were not helpful in further adding to the predictability of coronary artery disease in perimenopausal patients with typical angina as assessed by treadmill exercise stress test.


Subject(s)
C-Reactive Protein/metabolism , Carotid Arteries/diagnostic imaging , Coronary Disease/diagnosis , Exercise Test/methods , Perimenopause , Angina Pectoris/blood , Angina Pectoris/diagnosis , Coronary Angiography , Coronary Disease/blood , Diagnosis, Differential , Electrocardiography , Female , Follow-Up Studies , Humans , Middle Aged , Nephelometry and Turbidimetry , Predictive Value of Tests , Prognosis , Reproducibility of Results , Tunica Intima/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL